
Jinxia Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561641/publications.pdf Version: 2024-02-01

Ιινινία Χιι

#	Article	IF	CITATIONS
1	Inhibitive effect of SiO2@ NO2- intercalated MgAl-LDH nanocomposite on steel in Cl- contaminated saturated Ca(OH)2 solution. Corrosion Science, 2022, 195, 109997.	6.6	22
2	Effect of nitrite intercalated Mgâ^'Al layered double hydroxides on mortar durability under Clâ^' and SO2â^'4 coexisting environment. Journal of Central South University, 2022, 29, 546-560.	3.0	4
3	Electrical and Piezoresistive Properties of Steel Fiber Cement-based Composites Aligned by a Magnetic Field. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 229-240.	1.0	4
4	Hydration behavior and chloride ingress in cement mortar incorporating a novel core@shell admixture. Cement and Concrete Composites, 2022, 128, 104461.	10.7	16
5	Improving electrical and piezoresistive properties of cement-based composites by combined addition of nano carbon black and nickel nanofiber. Journal of Building Engineering, 2022, 51, 104312.	3.4	7
6	Enhanced inhibition performance of NO2- intercalated MgAl-LDH modified with nano-SiO2 on steel corrosion in simulated concrete pore solution. Corrosion Science, 2022, 204, 110387.	6.6	17
7	Evaluation of Corrosion Inhibition of NO2â^' Intercalated LDHs on Steel Coated by Cement Paste. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 399-409.	1.0	0
8	Application of magnesium alloy sacrificial anode for restraining chloride ingress into mortar. Construction and Building Materials, 2022, 344, 128212.	7.2	1
9	Anisotropic electrical and piezoresistive sensing properties of cement-based sensors with aligned carbon fibers. Cement and Concrete Composites, 2021, 116, 103873.	10.7	33
10	Hierarchical zeolite-LTA@Mg-Al layered double hydroxide core@shell structure with enhanced corrosion protection of steel in saturated Ca(OH)2 solution. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122, 260-272.	5.3	12
11	Kinetic, thermodynamic and equilibrium studies on chloride adsorption from simulated concrete pore solution by core@shell zeolite-LTA@Mg-Al layered double hydroxides. Applied Clay Science, 2021, 209, 106117.	5.2	17
12	Improved conductivity and piezoresistive properties of Ni-CNTs cement-based composites under magnetic field. Cement and Concrete Composites, 2021, 121, 104089.	10.7	22
13	Corrosion protection of steel by Mg-Al layered double hydroxides in simulated concrete pore solution: Effect of SO42 Corrosion Science, 2020, 163, 108223.	6.6	45
14	Effect of MgAl-NO2 LDHs inhibitor on steel corrosion in chloride-free and contaminated simulated carbonated concrete pore solutions. Corrosion Science, 2020, 176, 108940.	6.6	50
15	Increasing self-sensing capability of carbon nanotubes cement-based materials by simultaneous addition of Ni nanofibers with low content. Construction and Building Materials, 2020, 254, 119306.	7.2	23
16	Chloride adsorption on aminobenzoate intercalated layered double hydroxides: Kinetic, thermodynamic and equilibrium studies. Applied Clay Science, 2020, 187, 105495.	5.2	34
17	A comparative investigation on cathodic protections of three sacrificial anodes on chloride-contaminated reinforced concrete. Construction and Building Materials, 2020, 246, 118476.	7.2	31
18	Enhancing corrosion resistance of epoxy coating on steel reinforcement by aminobenzoate intercalated layered double hydroxides. Progress in Organic Coatings, 2019, 134, 288-296.	3.9	56

Jinxia Xu

#	Article	IF	CITATIONS
19	Microstructure and pressure-sensitive properties of cement-based composite with Ni nanowires. Construction and Building Materials, 2018, 159, 46-53.	7.2	8
20	Influence of polycarboxylate superplasticizer on chloride binding in cement paste. Construction and Building Materials, 2018, 158, 847-854.	7.2	21
21	Electrochemical and Semiconducting Properties of Passive Films on Steel Surfaces in Alkali-Activated Slag Extraction Solution. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	9
22	Chloride removal and corrosion inhibitions of nitrate, nitrite-intercalated Mg Al layered double hydroxides on steel in saturated calcium hydroxide solution. Applied Clay Science, 2018, 163, 129-136.	5.2	85
23	Improvement on the Repair Effect of Electrochemical Chloride Extraction Using a Modified Electrode Configuration. Materials, 2018, 11, 225.	2.9	10
24	Chloride absorption by nitrate, nitrite and aminobenzoate intercalated layered double hydroxides. Journal of Materials Science, 2017, 52, 5908-5916.	3.7	52
25	Effect of Na2SiO3 content on passivation and corrosion behaviour of steel in a simulated pore solution of Na2SiO3-activated slag. Construction and Building Materials, 2017, 146, 156-164.	7.2	15
26	Improvement of mortar durability by electrochemical technique. Advances in Cement Research, 2017, 29, 429-437.	1.6	1
27	Electrochemical Characterization of Solid Ag/AgCl Reference Electrode with Different Electrolytes for Corrosion Monitoring of Steel in Concrete. Electrochemistry, 2016, 84, 383-389.	1.4	15
28	Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of silicate ion. Construction and Building Materials, 2016, 127, 344-352.	7.2	37
29	Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete. Journal of Thermal Science and Technology, 2016, 11, JTST0023-JTST0023.	1.1	13
30	Surface coating treatment and densification of mortar by electrodeposition method. Magazine of Concrete Research, 2016, 68, 69-79.	2.0	10
31	Influence of surfactants on chloride binding in cement paste. Construction and Building Materials, 2016, 125, 369-374.	7.2	22
32	Influence of elevated temperature on release of bound chlorides from chloride-admixed plain and blended cement pastes. Construction and Building Materials, 2016, 104, 9-15.	7.2	17
33	Application of Electrodeposition Method in Upgrading Mortar Durability. Journal of Advanced Concrete Technology, 2015, 13, 367-372.	1.8	6
34	Investigation on the performance characteristics of chloride selective electrode in concrete. Ionics, 2015, 21, 2981-2992.	2.4	23
35	Prediction of compressive strength and elastic modulus of expanded polystyrene lightweight concrete. Magazine of Concrete Research, 2015, 67, 954-962.	2.0	30
36	Influence of flexural fatigue on chloride threshold value for the corrosion of steels in Ca(OH)2 solutions. Materials Chemistry and Physics, 2015, 164, 23-28.	4.0	10

Jinxia Xu

#	Article	IF	CITATIONS
37	Influence of compression fatigue on chloride threshold value for the corrosion of steels in simulated concrete pore. Construction and Building Materials, 2014, 73, 699-704.	7.2	14
38	Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions. Construction and Building Materials, 2014, 56, 16-20.	7.2	113
39	Electrochemical Characterization of a Solid Embeddable Ag/AgCl Reference Electrode for Corrosion Monitoring in Reinforced Concrete. Electrochemistry, 2014, 82, 1040-1046.	1.4	31
40	Releases of bound chlorides from chloride-admixed plain and blended cement pastes subjected to sulfate attacks. Construction and Building Materials, 2013, 45, 53-59.	7.2	54
41	Influence of chloride salt type on critical chloride content of reinforcement corrosion in concrete. Magazine of Concrete Research, 2013, 65, 319-331.	2.0	8
42	Influence of chloride salt type on threshold level of reinforcement corrosion in simulated concrete pore solutions. Construction and Building Materials, 2012, 30, 516-521.	7.2	56
43	Chloride threshold value for reinforcement corrosion in concrete with additions of silica fume or fly ash. Magazine of Concrete Research, 2011, 63, 905-913.	2.0	17
44	Electrochemical behavior of steel bar in electrolytes: Influence of pH value and cations. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 1133-1136.	1.0	2
45	Influence of CaCl2 and NaCl from different sources on chloride threshold value for the corrosion of steel reinforcement in concrete. Construction and Building Materials, 2011, 25, 663-669.	7.2	55
46	Influence of detection methods on chloride threshold value for the corrosion of steel reinforcement. Construction and Building Materials, 2009, 23, 1902-1908.	7.2	73
47	Structural and magnetic properties of Co and Co71Ni29 nanowire arrays prepared by template electrodeposition. Journal of Materials Science, 2008, 43, 4163-4166.	3.7	6
48	Fabrication and photoluminescence property of CdS nanowire array by template electrodeposition. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 118-120.	1.0	0
49	Structural and magnetic properties of electrodeposited Ni70Fe30 nanowire array. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 472-474.	1.0	1
50	Pulsed electrodeposition of monocrystalline Ni nanowire array and its magnetic properties. Applied Surface Science, 2008, 254, 6623-6627.	6.1	15
51	Pulsed electrodeposition of monocrystalline Ni nanowire array by intermittent symmetric square wave. Materials Letters, 2008, 62, 1491-1494.	2.6	2
52	Fabrication and magnetic property of binary Co–Ni nanowire array by alternating current electrodeposition. Applied Surface Science, 2007, 253, 7203-7206.	6.1	14
53	Fabrication of amorphous Co and Co-P nanometer array with different shapes in alumina template by AC electrodeposition. Materials Letters, 2006, 60, 2069-2072.	2.6	10
54	Fabrication and magnetic property of monocrystalline cobalt nanowire array by direct current electrodeposition. Materials Letters, 2005, 59, 981-984.	2.6	40

#	Article	IF	CITATIONS
55	Study on the structures and magnetic properties of Ni, Co-Al2O3 electrodeposited nanowire arrays. Materials Research Bulletin, 2004, 39, 811-818.	5.2	21