Igor Marques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561512/publications.pdf Version: 2024-02-01

ICOP MARQUES

#	Article	IF	CITATIONS
1	Binding and Transport Properties of a Benzo[<i>b</i>]thiopheneâ€Based Monoâ€(thio)urea Library. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
2	Hydrazones in anion transporters: the detrimental effect of a second binding site. Organic and Biomolecular Chemistry, 2021, 19, 8324-8337.	1.5	8
3	Hydrosulfide (HS ^{â^'}) Recognition and Sensing in Water by Halogen Bonding Hosts. Angewandte Chemie - International Edition, 2021, 60, 24048-24053.	7.2	15
4	Being positive is not everything – experimental and computational studies on the selectivity of a selfâ€assembled, multiple redoxâ€state, receptor that binds anions with up to picomolar affinities. Chemistry - A European Journal, 2021, , .	1.7	1
5	Development of a Library of Thiopheneâ€Based Drugâ€Like Lego Molecules: Evaluation of Their Anion Binding, Transport Properties, and Cytotoxicity. Chemistry - A European Journal, 2020, 26, 888-899.	1.7	11
6	The Green Box: An Electronically Versatile Perylene Diimide Macrocyclic Host for Fullerenes. Journal of the American Chemical Society, 2020, 142, 349-364.	6.6	48
7	Lipidomic analysis of human primary hepatocytes following LXR activation with GW3965 identifies AGXT2L1 as a main target associated to changes in phosphatidylethanolamine. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105558.	1.2	6
8	Estrogen receptors in urogenital schistosomiasis and bladder cancer: Estrogen receptor alpha-mediated cell proliferation. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 738.e23-738.e35.	0.8	8
9	Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chemical Science, 2019, 10, 1976-1985.	3.7	29
10	Anion Recognition in Water by Charge-Neutral Halogen and Chalcogen Bonding Foldamer Receptors. Journal of the American Chemical Society, 2019, 141, 4119-4129.	6.6	174
11	A Chiral Halogenâ€Bonding [3]Rotaxane for the Recognition and Sensing of Biologically Relevant Dicarboxylate Anions. Angewandte Chemie, 2018, 130, 593-597.	1.6	35
12	A Chiral Halogenâ€Bonding [3]Rotaxane for the Recognition and Sensing of Biologically Relevant Dicarboxylate Anions. Angewandte Chemie - International Edition, 2018, 57, 584-588.	7.2	139
13	Chiral halogen and chalcogen bonding receptors for discrimination of stereo- and geometric dicarboxylate isomers in aqueous media. Chemical Communications, 2018, 54, 10851-10854.	2.2	62
14	Full elucidation of the transmembrane anion transport mechanism of squaramides using <i>in silico</i> investigations. Physical Chemistry Chemical Physics, 2018, 20, 20796-20811.	1.3	23
15	A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nature Chemistry, 2017, 9, 667-675.	6.6	201
16	Chalcogen Bonding Macrocycles and [2]Rotaxanes for Anion Recognition. Journal of the American Chemical Society, 2017, 139, 3122-3133.	6.6	187
17	Anion- and Solvent-Induced Rotary Dynamics and Sensing in a Perylene Diimide [3]Catenane. Journal of the American Chemical Society, 2017, 139, 9026-9037.	6.6	64
18	Enantioselective Anion Recognition by Chiral Halogen-Bonding [2]Rotaxanes. Journal of the American Chemical Society, 2017, 139, 12228-12239.	6.6	110

IGOR MARQUES

#	Article	IF	CITATIONS
19	Tilting and Tumbling in Transmembrane Anion Carriers: Activity Tuning through n â€Alkyl Substitution. Chemistry - A European Journal, 2016, 22, 2004-2011.	1.7	22
20	lodide Recognition and Sensing in Water by a Halogenâ€Bonding Ruthenium(II)â€Based Rotaxane. Chemistry - A European Journal, 2016, 22, 185-192.	1.7	83
21	Selective Nitrate Recognition by a Halogenâ€Bonding Fourâ€6tation [3]Rotaxane Molecular Shuttle. Angewandte Chemie - International Edition, 2016, 55, 11069-11076.	7.2	95
22	Unprecedented Double azaâ€Michael Addition within a Sapphyrin Core. Chemistry - A European Journal, 2016, 22, 14349-14355.	1.7	5
23	Selective Nitrate Recognition by a Halogenâ€Bonding Fourâ€Station [3]Rotaxane Molecular Shuttle. Angewandte Chemie, 2016, 128, 11235-11242.	1.6	28
24	Enhancing the enantioselective recognition and sensing of chiral anions by halogen bonding. Chemical Communications, 2016, 52, 5527-5530.	2.2	74
25	Recognition of bio-relevant dicarboxylate anions by an azacalix[2]arene[2]triazine derivative decorated with urea moieties. Organic and Biomolecular Chemistry, 2015, 13, 3070-3085.	1.5	10
26	Neutral bimetallic rhenium(I)-containing halogen and hydrogen bonding acyclic receptors for anion recognition. Journal of Organometallic Chemistry, 2015, 792, 206-210.	0.8	17
27	Tris–thiourea tripodal-based molecules as chloride transmembrane transporters: insights from molecular dynamics simulations. Soft Matter, 2014, 10, 3608.	1.2	14
28	Interaction of a calix[4]arene derivative with a DOPC bilayer: Biomolecular simulations towards chloride transport. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 890-901.	1.4	12
29	Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. Nature Chemistry, 2014, 6, 1039-1043.	6.6	269
30	Acylthioureas as anion transporters: the effect of intramolecular hydrogen bonding. Organic and Biomolecular Chemistry, 2014, 12, 62-72.	1.5	71
31	Halide selective anion recognition by an amide-triazolium axle containing [2]rotaxane. Organic and Biomolecular Chemistry, 2014, 12, 4924-4931.	1.5	21
32	Chloride, carboxylate and carbonate transport by ortho-phenylenediamine-based bisureas. Chemical Science, 2013, 4, 103-117.	3.7	119
33	Towards predictable transmembrane transport: QSAR analysis of anion binding and transport. Chemical Science, 2013, 4, 3036.	3.7	104
34	Tunable transmembrane chloride transport by bis-indolylureas. Chemical Science, 2012, 3, 1436.	3.7	53
35	The role of lipophilicity in transmembrane anion transport. Chemical Communications, 2012, 48, 5274.	2.2	82
36	Hydrosulfide (HSâ€) Recognition and Sensing in Water by Halogen Bonding Hosts. Angewandte Chemie, 0,	1.6	5