
Igor A Baburin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561395/publications.pdf Version: 2024-02-01

ICOD A RABIIDIN

#	Article	IF	CITATIONS
1	Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging. Nanoscale, 2021, 13, 10425-10435.	5.6	8
2	Morphogenesis of Magnetite Mesocrystals: Interplay between Nanoparticle Morphology and Solvation Shell. Chemistry of Materials, 2021, 33, 9119-9130.	6.7	11
3	Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie - International Edition, 2020, 59, 1087-1092.	13.8	34
4	Interfacial Approach toward Benzeneâ€Bridged Polypyrrole Film–Based Microâ€Supercapacitors with Ultrahigh Volumetric Power Density. Advanced Functional Materials, 2020, 30, 1908243.	14.9	60
5	Acetylation of graphite oxide. Physical Chemistry Chemical Physics, 2020, 22, 21059-21067.	2.8	2
6	Identification of Prime Factors to Maximize the Photocatalytic Hydrogen Evolution of Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 9752-9762.	13.7	94
7	lsotopy classes for 3-periodic net embeddings. Acta Crystallographica Section A: Foundations and Advances, 2020, 76, 275-301.	0.1	4
8	On Cayley graphs of {b Z}^4. Acta Crystallographica Section A: Foundations and Advances, 2020, 76, 584-588.	0.1	0
9	Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angewandte Chemie - International Edition, 2018, 57, 13780-13783.	13.8	283
10	Mechanische Stabilitäversus ultrahohe Porositäin kristallinen Netzwerkmaterialien: ein Balanceakt!. Angewandte Chemie, 2018, 130, 13976-13979.	2.0	25
11	Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8116-E8124.	7.1	88
12	Graphite oxide swelling in molten sugar alcohols and their aqueous solutions. Carbon, 2018, 140, 157-163.	10.3	15
13	Porous graphite oxide pillared with tetrapod-shaped molecules. Carbon, 2017, 120, 145-156.	10.3	29
14	Multilayered intercalation of 1-octanol into Brodie graphite oxide. Nanoscale, 2017, 9, 6929-6936.	5.6	27
15	On the group-theoretical approach to the study of interpenetrating nets. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, 366-375.	0.1	10
16	A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder. CrystEngComm, 2016, 18, 2477-2489.	2.6	26
17	Effect of Surface Properties on the Microstructure, Thermal, and Colloidal Stability of VB ₂ Nanoparticles. Chemistry of Materials, 2015, 27, 5106-5115.	6.7	52
18	Hydrogen adsorption by perforated graphene. International Journal of Hydrogen Energy, 2015, 40, 6594-6599.	7.1	59

IGOR A BABURIN

#	Article	IF	CITATIONS
19	Microwave-Assisted Synthesis of Defects Metal-Imidazolate-Amide-Imidate Frameworks and Improved CO ₂ Capture. Inorganic Chemistry, 2015, 54, 10073-10080.	4.0	27
20	Porous Graphene Oxide/Diboronic Acid Materials: Structure and Hydrogen Sorption. Journal of Physical Chemistry C, 2015, 119, 27179-27191.	3.1	49
21	From zeolite nets to sp ³ carbon allotropes: a topology-based multiscale theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 1332-1338.	2.8	45
22	Interconnection of Nanoparticles within 2D Superlattices of PbS/Oleic Acid Thin Films. Advanced Materials, 2014, 26, 3042-3049.	21.0	51
23	Indium Imidazolate Frameworks with Differently Distorted ReO3-Type Structures: Syntheses, Structures, Phase Transitions, and Crystallization Studies. Crystal Growth and Design, 2014, 14, 4664-4673.	3.0	11
24	Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal–organic frameworks with flexible ethoxy substituent. CrystEngComm, 2013, 15, 9394.	2.6	27
25	Subtle polymorphism of zinc imidazolate frameworks: temperature-dependent ground states in the energy landscape revealed by experiment and theory. CrystEngComm, 2013, 15, 4036-4040.	2.6	38
26	A rare alb-4,8-Cmce metal–coordination network based on tetrazolate and phosphonate functionalized 1,3,5,7-tetraphenyladamantane. CrystEngComm, 2013, 15, 1235.	2.6	42
27	Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism. Crystal Growth and Design, 2013, 13, 1231-1237.	3.0	262
28	Theoretical investigation of the electronic structure and quantum transport in the graphene–C(111) diamond surface system. Journal of Physics Condensed Matter, 2013, 25, 435302.	1.8	13
29	Dye Encapsulation Inside a New Mesoporous Metal–Organic Framework for Multifunctional Solvatochromicâ€Response Function. Chemistry - A European Journal, 2012, 18, 13299-13303.	3.3	86
30	A family of 2D and 3D coordination polymers involving a trigonal tritopic linker. Dalton Transactions, 2012, 41, 4172.	3.3	25
31	An Isoreticular Family of Microporous Metal–Organic Frameworks Based on Zinc and 2‧ubstituted Imidazolateâ€4â€amideâ€5â€imidate: Syntheses, Structures and Properties. Chemistry - A European Journal, 201 18, 11630-11640.	2,3.3	26
32	The energy landscapes of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring. Journal of Materials Chemistry, 2012, 22, 10152-10154.	6.7	29
33	Packings of Carbon Nanotubes – New Materials for Hydrogen Storage. Advanced Materials, 2011, 23, 1237-1241.	21.0	76
34	Route to a Family of Robust, Nonâ€interpenetrated Metal–Organic Frameworks with ptoâ€like Topology. Chemistry - A European Journal, 2011, 17, 13007-13016.	3.3	127
35	Topological Diversity, Adsorption and Fluorescence Properties of MOFs Based on a Tetracarboxylate Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 3835-3841.	2.0	36
36	A Highly Porous Metal–Organic Framework with Open Nickel Sites. Angewandte Chemie - International Edition, 2010, 49, 8489-8492.	13.8	149

IGOR A BABURIN

#	Article	IF	CITATIONS
37	Modelling polymorphs of metal–organic frameworks: a systematic study of diamondoid zinc imidazolates. CrystEngComm, 2010, 12, 2809.	2.6	25
38	New Chiral and Flexible Metalâ^'Organic Framework with a Bifunctional Spiro Linker and Zn ₄ O-Nodes. Inorganic Chemistry, 2010, 49, 4440-4446.	4.0	51
39	Interpenetrated Three-Dimensional Networks of Hydrogen-Bonded Organic Species: A Systematic Analysis of the Cambridge Structural Database. Crystal Growth and Design, 2008, 8, 519-539.	3.0	232
40	Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one- or two-dimensional polymeric motifs. CrystEngComm, 2008, 10, 1822.	2.6	160
41	Three-dimensional hydrogen-bonded frameworks in organic crystals: a topological study. Acta Crystallographica Section B: Structural Science, 2007, 63, 791-802.	1.8	72
42	Sizes of molecules in organic crystals: the Voronoi–Dirichlet approach. Acta Crystallographica Section B: Structural Science, 2004, 60, 447-452.	1.8	20