Diego Troya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561270/publications.pdf Version: 2024-02-01

		87723	118652
111	4,351	38	62
papers	citations	h-index	g-index
112	112	112	3738
all docs	docs citations	times ranked	citing authors

DIECO TROVA

#	Article	IF	CITATIONS
1	Reversible Dissociation for Effective Storage of Diborane Gas within the UiO-66-NH2 Metal–Organic Framework. ACS Applied Materials & Interfaces, 2022, , .	4.0	4
2	Conformational Analysis of Fluoro-, Chloro-, and Proteo-Alkene Gly–Pro and Pro–Pro Isosteres to Mimic Collagen. Journal of Physical Chemistry B, 2022, 126, 217-228.	1.2	1
3	Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66. Inorganic Chemistry, 2022, 61, 8585-8591.	1.9	5
4	Semiconducting and Metallic [5,5] Fullertube Nanowires: Characterization of Pristine D _{5h} (1)-C ₉₀ and D _{5d} (1)-C ₁₀₀ . Journal of the American Chemical Society, 2021, 143, 4593-4599.	6.6	17
5	Bifurcated Dihydrogen Bonding in the Uptake of Gas-Phase Diborane on Silica. Journal of Physical Chemistry Letters, 2021, 12, 4987-4992.	2.1	1
6	Insight into Hydrogen Abstractions by Nitrate Radical: Structural, Solvent Effects, and Evidence for a Polar Transition State. Journal of Physical Chemistry A, 2021, 125, 5471-5480.	1.1	5
7	Outdoor dissolution and photodegradation of insensitive munitions formulations IMX-101 and IMX-104: Photolytic transformation pathway and mechanism study. Chemosphere, 2021, 280, 130672.	4.2	2
8	Atomic resolution tracking of nerve-agent simulant decomposition and host metal–organic framework response in real space. Communications Chemistry, 2021, 4, .	2.0	8
9	Prolonged Association between Water Molecules under Hydrophobic Nanoconfinement. Journal of Physical Chemistry B, 2021, 125, 13767-13777.	1.2	3
10	Multimodal Characterization of Materials and Decontamination Processes for Chemical Warfare Protection. ACS Applied Materials & amp; Interfaces, 2020, 12, 14721-14738.	4.0	21
11	Multichannel dynamics in the OH+ n-butane reaction revealed by crossed-beam slice imaging and quasiclassical trajectory calculations. Journal of Chemical Physics, 2020, 153, 014302.	1.2	2
12	High-Resolution Comonomer Sequencing of Blocky Brominated Syndiotactic Polystyrene Copolymers Using ¹³ C NMR Spectroscopy and Computer Simulations. Macromolecules, 2020, 53, 9539-9552.	2.2	4
13	Metal–Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents. ACS Applied Materials & Interfaces, 2020, 12, 14641-14661.	4.0	46
14	Relating Geometric Nanoconfinement and Local Molecular Environment to Diffusion in Ionic Polymer Membranes. Macromolecules, 2020, 53, 3296-3305.	2.2	16
15	Ab Initio and Quasiclassical Trajectory Study of the O(³ P) + 2-Propanol Hydrogen Abstraction Reaction. Journal of Physical Chemistry A, 2019, 123, 6911-6920.	1.1	6
16	Self-amplified depolymerization of oligo(thiourethanes) for the release of COS/H ₂ S. Polymer Chemistry, 2019, 10, 2991-2995.	1.9	18
17	Correlated Multimodal Approach Reveals Key Details of Nerve-Agent Decomposition by Single-Site Zr-Based Polyoxometalates. Journal of Physical Chemistry Letters, 2019, 10, 2295-2299.	2.1	23
18	Molecular-Level Insight into CO ₂ Adsorption on the Zirconium-Based Metal–Organic Framework, UiO-66: A Combined Spectroscopic and Computational Approach. Journal of Physical Chemistry C, 2019, 123, 13731-13738.	1,5	34

#	Article	IF	CITATIONS
19	Geometry and energetics of CO adsorption on hydroxylated UiO-66. Physical Chemistry Chemical Physics, 2019, 21, 5078-5085.	1.3	17
20	Conformational Analysis of n→π* Interactions in Collagen Triple Helix Models. Journal of Physical Chemistry B, 2019, 123, 496-503.	1.2	7
21	Key mechanistic details of paraoxon decomposition by polyoxometalates: Critical role of para-nitro substitution. Chemical Physics, 2019, 518, 30-37.	0.9	8
22	Reactivity Consequences of Conformational Isomerism in 1-Propanol. Journal of Physical Chemistry A, 2019, 123, 1044-1050.	1.1	9
23	Impact of ambient gases on the mechanism of [Cs8Nb6O19]-promoted nerve-agent decomposition. Chemical Science, 2018, 9, 2147-2158.	3.7	18
24	Insights into CO2 adsorption and chemical fixation properties of VPI-100 metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 22195-22203.	5.2	17
25	Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of Adsorbed CO. Journal of Physical Chemistry C, 2018, 122, 14582-14589.	1.5	52
26	Benzene, Toluene, and Xylene Transport through UiO-66: Diffusion Rates, Energetics, and the Role of Hydrogen Bonding. Journal of Physical Chemistry C, 2018, 122, 16060-16069.	1.5	60
27	Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP(<i>g</i>), with Zirconium(IV) MOFs: An Ultrahigh-Vacuum and DFT Study. Journal of Physical Chemistry C, 2017, 121, 11261-11272.	1.5	120
28	Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition. Scientific Reports, 2017, 7, 773.	1.6	24
29	Systematic investigation of the excited-state properties of anthracene-dicarboxylic acids. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 337, 207-215.	2.0	17
30	In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 599-602.	6.6	169
31	Reaction Mechanism of Nerve-Agent Decomposition with Zr-Based Metal Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 29312-29323.	1.5	84
32	Adsorption of Substituted Benzene Derivatives on Silica: Effects of Electron Withdrawing and Donating Groups. Journal of Physical Chemistry C, 2016, 120, 13024-13031.	1.5	34
33	Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group. Journal of the American Chemical Society, 2016, 138, 6998-7004.	6.6	156
34	Reaction Mechanism of Nerve-Agent Hydrolysis with the Cs8Nb6O19 Lindqvist Hexaniobate Catalyst. Journal of Physical Chemistry C, 2016, 120, 16822-16830.	1.5	18
35	Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O ₃ , NO ₃ , and OH, on organic surfaces. Chemical Society Reviews, 2016, 45, 3731-3746.	18.7	90
36	Size dependent ion-exchange of large mixed-metal complexes into Nafion [®] membranes. Polymer Chemistry, 2015, 6, 6870-6879.	1.9	4

#	Article	IF	CITATIONS
37	Surface Catalyzed Oxidative Oligomerization of 17β-Estradiol by Fe ³⁺ -Saturated Montmorillonite. Environmental Science & Technology, 2015, 49, 956-964.	4.6	91
38	Adsorption of 2-Chloroethyl Ethyl Sulfide on Silica: Binding Mechanism and Energy of a Bifunctional Hydrogen-Bond Acceptor at the Gas–Surface Interface. Journal of Physical Chemistry C, 2015, 119, 365-372.	1.5	32
39	A theoretical study of the ozonolysis of C ₆₀ : primary ozonide formation, dissociation, and multiple ozone additions. Physical Chemistry Chemical Physics, 2014, 16, 5977-5986.	1.3	20
40	Gas-surface reactions of nitrate radicals with vinyl-terminated self-assembled monolayers. Physical Chemistry Chemical Physics, 2014, 16, 16659-16670.	1.3	13
41	Chemical Warfare Agent Surface Adsorption: Hydrogen Bonding of Sarin and Soman to Amorphous Silica. Journal of Physical Chemistry Letters, 2014, 5, 1393-1399.	2.1	36
42	Theoretical Study of the Adsorption of Organophosphorous Compounds to Models of a Silica Surface. Journal of Physical Chemistry C, 2013, 117, 14625-14634.	1.5	22
43	Infrared Spectra and Binding Energies of Chemical Warfare Nerve Agent Simulants on the Surface of Amorphous Silica. Journal of Physical Chemistry C, 2013, 117, 15685-15697.	1.5	66
44	Chemical Dynamics Simulations of the Hydroxyl Radical Reaction with Ethene. Chinese Journal of Chemical Physics, 2013, 26, 765-773.	0.6	7
45	Interfacial energy exchange and reaction dynamics in collisions of gases on model organic surfaces. Progress in Surface Science, 2012, 87, 221-252.	3.8	21
46	Reaction Probability and Infrared Detection of the Primary Ozonide in Collisions of O ₃ with Surface-Bound C ₆₀ . Journal of Physical Chemistry Letters, 2012, 3, 3193-3198.	2.1	11
47	Dynamics of collisions of hydroxyl radicals with fluorinated self-assembled monolayers. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	17
48	Dynamics of collisions of hydroxyl radicals with fluorinated self-assembled monolayers. , 2012, , 79-90.		0
49	Quasi-classical trajectory study of the dynamics of the Cl + CH4→ HCl + CH3 reaction. Physical Chemistry Chemical Physics, 2011, 13, 11438.	1.3	22
50	Molecular Simulations of the Structure and Dynamics of Water Confined between Alkanethiol Self-Assembled Monolayer Plates. Journal of Physical Chemistry B, 2011, 115, 4662-4670.	1.2	13
51	Theoretical Study of the Dynamics of Collisions Between HCl and ω-Hydroxylated Alkanethiol Self-Assembled Monolayers. Journal of Physical Chemistry C, 2011, 115, 2273-2283.	1.5	19
52	How Solvent Modulates Hydroxyl Radical Reactivity in Hydrogen Atom Abstractions. Journal of the American Chemical Society, 2010, 132, 2907-2913.	6.6	140
53	Theoretical study of the dynamics of F+alkanethiol self-assembled monolayer hydrogen-abstraction reactions. Journal of Chemical Physics, 2010, 132, 134307.	1.2	17
54	Experimental and theoretical study of CO collisions with CH3- and CF3-terminated self-assembled monolayers. Journal of Chemical Physics, 2009, 130, 084702.	1.2	21

#	Article	IF	CITATIONS
55	Theoretical study of the dynamics of H+alkane reactions. Chemical Physics Letters, 2009, 467, 243-248.	1.2	7
56	Ab Initio and Dynamics Study of the O(³ P) + NH ₃ and O(³ P) + N ₂ H ₄ Reactions at Hyperthermal Collision Energies. Journal of Physical Chemistry A, 2009, 113, 13863-13870.	1.1	11
57	Direct-Dynamics Study of the F + CH ₄ , C ₂ H ₆ , C ₃ H ₈ , and <i>i</i> -C ₄ H ₁₀ Reactions. Journal of Physical Chemistry A, 2009, 113, 4294-4304.	1.1	24
58	Theoretical Study of the Stereodynamics of CO Collisions with CH ₃ - and CF ₃ -Terminated Alkanethiolate Self-Assembled Monolayers. Journal of Physical Chemistry A, 2009, 113, 4155-4167.	1.1	13
59	Tribute to George C. Schatz. Journal of Physical Chemistry A, 2009, 113, 3709-3710.	1.1	1
60	Theoretical study of the dynamics of hyperthermal collisions of Ar with a fluorinated alkanethiolate self-assembled monolayer. Physical Chemistry Chemical Physics, 2008, 10, 5776.	1.3	14
61	Classical Trajectory Study of the Dynamics of the Reaction of Cl Atoms with Ethane. Journal of Physical Chemistry A, 2008, 112, 9387-9395.	1.1	22
62	Collisions of Polar and Nonpolar Gases with Hydrogen Bonding and Hydrocarbon Self-Assembled Monolayers. Journal of Physical Chemistry C, 2008, 112, 17272-17280.	1.5	32
63	Experimental and theoretical studies of the effect of mass on the dynamics of gas/organic-surface energy transfer. Journal of Chemical Physics, 2008, 128, 014713.	1.2	30
64	Hyperthermal Ar atom scattering from a C(0001) surface. Journal of Chemical Physics, 2008, 128, 224708.	1.2	34
65	Theoretical study of the dynamics of the H+CH4 and H+C2H6 reactions using a specific-reaction-parameter semiempirical Hamiltonian. Journal of Chemical Physics, 2008, 128, 194302.	1.2	31
66	Barriers of Hydrogen Abstraction from Primary, Secondary, and Tertiary Alkane Sites by O(³ P). Journal of Physical Chemistry A, 2007, 111, 10745-10753.	1.1	23
67	Theoretical Study of the Dynamics of Ar Collisions with C2H6and C2F6at Hyperthermal Energy. Journal of Physical Chemistry A, 2007, 111, 3618-3632.	1.1	18
68	Studying â€~chattering collisions' in the Cl+ethane reaction with classical trajectories. Chemical Physics Letters, 2007, 441, 171-175.	1.2	21
69	Experimental and Theoretical Investigations of the Inelastic and Reactive Scattering Dynamics of O(3P) + D2Ââ€. Journal of Physical Chemistry A, 2006, 110, 1327-1341.	1.1	61
70	Ab initio and direct quasiclassical-trajectory study of the Cl+CH4→HCl+CH3 reaction. Journal of Chemical Physics, 2006, 124, 074313.	1.2	41
71	Theoretical Study of the Effect of Surface Density on the Dynamics of Ar + Alkanethiolate Self-Assembled Monolayer Collisionsâ€. Journal of Physical Chemistry A, 2006, 110, 1319-1326.	1.1	41
72	H + CD4 Abstraction Reaction Dynamics:  Product Energy Partitioning. Journal of Physical Chemistry A, 2006, 110, 3017-3027.	1.1	54

#	Article	IF	CITATIONS
73	H + CD4Abstraction Reaction Dynamics: Excitation Function and Angular Distributionsâ€. Journal of Physical Chemistry A, 2006, 110, 677-686.	1.1	52
74	Theoretical Study of the Arâ^', Krâ^', and Xeâ^'CH4, â^'CF4Intermolecular Potential-Energy Surfaces. Journal of Physical Chemistry A, 2006, 110, 10834-10843.	1.1	51
75	THEORETICAL STUDY OF REACTIONS OF HYPERTHERMAL O(3P)WITH PERFLUORINATED HYDROCARBONS. , 2006, , 365-375.		1
76	Hyperthermal Chemistry in the Gas Phase and on Surfaces: Theoretical Studies. ChemInform, 2005, 36, no.	0.1	0
77	Classical trajectory study of collisions of Ar with alkanethiolate self-assembled monolayers: Potential-energy surface effects on dynamics. Journal of Chemical Physics, 2005, 122, 214712.	1.2	44
78	Ab initioand direct quasiclassical-trajectory study of the F+CH4→HF+CH3 reaction. Journal of Chemical Physics, 2005, 123, 214305.	1.2	43
79	Quasiclassical Trajectory Study of the O(3P) + CH4→ OH + CH3Reaction with a Specific Reaction Parameters Semiempirical Hamiltonian. Journal of Physical Chemistry A, 2005, 109, 3015-3023.	1.1	52
80	Quasiclassical Trajectory Study of Energy Transfer and Collision-Induced Dissociation in Hyperthermal Ar + CH4 and Ar + CF4 Collisions. Journal of Physical Chemistry A, 2005, 109, 5814-5824.	1.1	18
81	A Reinterpretation of the Mechanism of the Simplest Reaction at an sp3-Hybridized Carbon Atom:  H + CD4 → CD3 + HD. Journal of the American Chemical Society, 2005, 127, 11898-11899.	6.6	67
82	Five New Zinc Phosphite Structures:  Tertiary Building Blocks in the Construction of Hybrid Materials. Inorganic Chemistry, 2005, 44, 2719-2727.	1.9	75
83	Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations. Physical Review B, 2005, 71, .	1.1	238
84	Multi-walled carbon nanotubes experiencing electrical breakdown as gas sensors. Nanotechnology, 2004, 15, 1596-1602.	1.3	56
85	Crossed beams and theoretical studies of the dynamics of hyperthermal collisions between Ar and ethane. Journal of Chemical Physics, 2004, 121, 11702-11714.	1.2	35
86	Theoretical studies of hyperthermal O(3P) collisions with hydrocarbon self-assembled monolayers. Journal of Chemical Physics, 2004, 120, 7696-7707.	1.2	85
87	Crossed beams and theoretical studies of the O(3P)+CH4→H+OCH3 reaction excitation function. Journal of Chemical Physics, 2004, 120, 731-739.	1.2	72
88	Properties and Improved Space Survivability of POSS (Polyhedral Oligomeric Silsesquioxane) Polyimides. Materials Research Society Symposia Proceedings, 2004, 851, 487.	0.1	10
89	The role of vacancy defects and holes in the fracture of carbon nanotubes. Chemical Physics Letters, 2004, 390, 413-420.	1.2	338
90	A QCT study of the cross-section, energy and angular distributions of the OH+D2→HOD+D reaction at ET=0.28 eV on the YZCL2 surface. Chemical Physics Letters, 2004, 399, 527-533.	1.2	14

#	Article	IF	CITATIONS
91	Ab initiopotential energy surface, variational transition state theory, and quasiclassical trajectory studies of the F+CH4→HF+CH3 reaction. Journal of Chemical Physics, 2004, 120, 5181-5191.	1.2	46
92	Quantum wave packet and quasiclassical trajectory studies of OH+CO: Influence of the reactant channel well on thermal rate constants. Journal of Chemical Physics, 2004, 120, 1231-1238.	1.2	71
93	QUASICLASSICAL TRAJECTORY STUDIES OF FOUR-ATOM REACTIONS. Advanced Series in Physical Chemistry, 2004, , 249-290.	1.5	3
94	Hyperthermal chemistry in the gas phase and on surfaces: theoretical studies. International Reviews in Physical Chemistry, 2004, 23, 341-373.	0.9	58
95	Dynamics Studies of the O(3P) + Ch4, C2H6 and C3H8 Reactions. , 2004, , 329-348.		3
96	Carbon nanotube fracture – differences between quantum mechanical mechanisms and those of empirical potentials. Chemical Physics Letters, 2003, 382, 133-141.	1.2	88
97	Theoretical Studies of the O(3P) + Methane Reactionâ€. Journal of Physical Chemistry A, 2003, 107, 10497-10506.	1.1	71
98	Hyperthermal Reactions of O(3P) with Alkanes:  Observations of Novel Reaction Pathways in Crossed-Beams and Theoretical Studies. Journal of Physical Chemistry A, 2003, 107, 4583-4587.	1.1	64
99	Theoretical Studies of the O(3P) + Ethane Reaction. Journal of Physical Chemistry A, 2003, 107, 7161-7169.	1.1	47
100	A quasiclassical trajectory study of the reaction OH+CO→H+CO2. Journal of Chemical Physics, 2003, 119, 5848-5859.	1.2	92
101	A crossed molecular beams study of the O(3P)+H2 reaction: Comparison of excitation function with accurate quantum reactive scattering calculations. Journal of Chemical Physics, 2003, 118, 1585-1588.	1.2	111
102	Ab initio, kinetics, and dynamics study of Cl+CH4→HCl+CH3. Journal of Chemical Physics, 2002, 117, 5730-5741.	1.2	40
103	Quasiclassical Trajectory Study of Energy and Angular Distributions for the H + CO2→ OH + CO Reactionâ€. Journal of Physical Chemistry B, 2002, 106, 8148-8160.	1.2	28
104	Quasiclassical Trajectory and Transition State Theory Studies of the N(4S) + H2↔ NH(X3Σ-) + H Reaction. Journal of Physical Chemistry A, 2002, 106, 4125-4136.	1.1	43
105	A Quasiclassical Trajectory Study of the Cl + HCN → HCl + CN Reaction Dynamics. Microscopic Reaction Mechanism of the H(Cl) + HCN → H2(HCl) + CN Reactionsâ€. Journal of Physical Chemistry A, 2001, 105, 2285-2297.	1.1	14
106	A quasiclassical trajectory study of angular and internal state distributions in H+H2O and H+D2O at E=1.4 eV. Chemical Physics Letters, 2001, 343, 420-428.	1.2	17
107	Variational transition state theory and quasiclassical trajectory studies of the H2+OH→H+H2O reaction and some isotopic variants. Journal of Chemical Physics, 2001, 115, 1828-1842.	1.2	38
108	A quasiclassical trajectory study of reactivity and product energy disposal in H+H2O, H+D2O, and H+HOD. Journal of Chemical Physics, 2001, 114, 8397-8413.	1.2	38

#	Article	IF	CITATIONS
109	A quasiclassical trajectory study of product energy and angular distributions for the OH+D2 reaction. Journal of Chemical Physics, 2001, 115, 5160-5169.	1.2	23
110	A quasiclassical trajectory study of the H+HCN→H2+CN reaction dynamics. Journal of Chemical Physics, 2000, 113, 6253-6263.	1.2	18
111	The dynamics of the O(1D)+N2O→NO+NO reaction revisited: a QCT study on model potential energy surfaces. Chemical Physics Letters, 1999, 300, 603-612.	1.2	17