Yangbing Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/956105/publications.pdf

Version: 2024-02-01

		304602	345118
36	1,459	22	36
papers	citations	h-index	g-index
2.6	2.6	2.6	1740
36	36	36	1740
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity. Carbohydrate Polymers, 2015, 123, 157-163.	5.1	116
2	Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review. Journal of Agricultural and Food Chemistry, 2018, 66, 8-19.	2.4	100
3	TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydrate Polymers, 2016, 151, 326-334.	5.1	96
4	Investigation of physical properties and displacement mechanisms of surface-grafted nano-cellulose fluids for enhanced oil recovery. Fuel, 2017, 207, 352-364.	3.4	96
5	Preparation and Characterization of Lignin-Containing Cellulose Nanofibril from Poplar High-Yield Pulp via TEMPO-Mediated Oxidation and Homogenization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6131-6139.	3.2	84
6	Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresource Technology, 2018, 259, 228-236.	4.8	75
7	Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresource Technology, 2018, 247, 242-249.	4.8	74
8	Stabilization of Foam Lamella Using Novel Surface-Grafted Nanocellulose-Based Nanofluids. Langmuir, 2017, 33, 5127-5139.	1.6	59
9	Investigation of synergism between surface-grafted nano-cellulose and surfactants in stabilized foam injection process. Fuel, 2018, 211, 223-232.	3.4	55
10	Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose, 2016, 23, 2409-2420.	2.4	45
11	Treatment of paper mill wastewater using a composite inorganic coagulant prepared from steel mill waste pickling liquor. Separation and Purification Technology, 2019, 209, 238-245.	3.9	44
12	Improving salt tolerance and thermal stability of cellulose nanofibrils by grafting modification. Carbohydrate Polymers, 2019, 211, 257-265.	5.1	43
13	A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol. Biotechnology for Biofuels, 2017, 10, 38.	6.2	39
14	Evaluation of an organosolv-based biorefinery process to fractionate wheat straw into ethanol and co-products. Industrial Crops and Products, 2018, 121, 294-302.	2.5	38
15	Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid. Carbohydrate Polymers, 2019, 212, 67-74.	5.1	38
16	Enhancement of hydrophobicity of nanofibrillated cellulose through grafting of alkyl ketene dimer. Cellulose, 2018, 25, 6863-6871.	2.4	37
17	Design of Nanocellulose Fibrils Containing Lignin Segment (L-NCF) for Producing Stable Liquid Foams as "Green―Flooding Agents for Oil Recovery. ACS Sustainable Chemistry and Engineering, 2019, 7, 11426-11437.	3.2	36
18	Stability enhancement of nanofibrillated cellulose in electrolytes through grafting of 2-acrylamido-2-methylpropane sulfonic acid. Cellulose, 2017, 24, 731-738.	2.4	35

#	Article	IF	CITATIONS
19	Nano-fibrillated cellulose (NFC) as versatile carriers of TiO ₂ nanoparticles (TNPs) for photocatalytic hydrogen generation. RSC Advances, 2016, 6, 89457-89466.	1.7	32
20	Evaluation of Ultraviolet Light and Hydrogen Peroxide Enhanced Ozone Oxidation Treatment for the Production of Cellulose Nanofibrils. ACS Sustainable Chemistry and Engineering, 2020, 8, 2688-2697.	3.2	31
21	Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose, 2015, 22, 2499-2506.	2.4	30
22	Comparison of alkaline and acid-catalyzed steam pretreatments for ethanol production from tobacco stalk. Industrial Crops and Products, 2019, 142, 111864.	2.5	25
23	Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide. Cellulose, 2019, 26, 7769-7780.	2.4	24
24	Cellulose nanofibril-polymer hybrids for protecting drilling fluid at high salinity and high temperature. Carbohydrate Polymers, 2020, 229, 115465.	5.1	22
25	Pseudo-interpenetrating network viscoelastic surfactant fracturing fluid formed by surface-modified cellulose nanofibril and wormlike micelles. Journal of Petroleum Science and Engineering, 2022, 208, 109608.	2.1	21
26	Binding of Sodium Cholate In Vitro by Cationic Microfibrillated Cellulose. Industrial & Engineering Chemistry Research, 2014, 53, 18508-18513.	1.8	19
27	Evaluation of an integrated process to fully utilize bamboo biomass during the production of bioethanol. Bioresource Technology, 2017, 236, 202-211.	4.8	19
28	Zwitterionic Cellulose Nanofibrils with High Salt Sensitivity and Tolerance. Biomacromolecules, 2020, 21, 1471-1479.	2.6	17
29	Cationic amphiphilic microfibrillated cellulose (MFC) for potential use for bile acid sorption. Carbohydrate Polymers, 2015, 132, 598-605.	5.1	16
30	Facile preparation of regenerated cellulose film from cotton linter using organic electrolyte solution (OES). Cellulose, 2017, 24, 1631-1639.	2.4	16
31	Using cationic nanofibrillated cellulose to increase the precipitated calcium carbonate retention and physical properties during reconstituted tobacco sheet preparation. Industrial Crops and Products, 2019, 130, 592-597.	2.5	16
32	Enhancing the Fock reactivity of dissolving pulp by the combined prerefining and poly dimethyl diallyl ammonium chloride-assisted cellulase treatment. Bioresource Technology, 2018, 260, 135-140.	4.8	14
33	Cationic cellulose nanofibers as sustainable flocculant and retention aid for reconstituted tobacco sheet with high performance. Carbohydrate Polymers, 2019, 210, 372-378.	5.1	12
34	Improving the production of nanofibrillated cellulose from bamboo pulp by the combined cellulase and refining treatment. Journal of Chemical Technology and Biotechnology, 2019, 94, 2178-2186.	1.6	12
35	Poly dimethyl diallyl ammonium chloride assisted cellulase pretreatment for pulp refining efficiency enhancement. Carbohydrate Polymers, 2019, 203, 342-348.	5.1	12
36	Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices. Journal of Industrial and Engineering Chemistry, 2018, 68, 24-32.	2.9	11

3