Ola Engkvist

List of Publications by Citations

Source: https://exaly.com/author-pdf/9560887/ola-engkvist-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

139 papers 4,660 citations

37 h-index 65 g-index

181 ext. papers

6,121 ext. citations

7.1 avg, IF

6.11 L-index

#	Paper	IF	Citations
139	The rise of deep learning in drug discovery. <i>Drug Discovery Today</i> , 2018 , 23, 1241-1250	8.8	650
138	Molecular de-novo design through deep reinforcement learning. <i>Journal of Cheminformatics</i> , 2017 , 9, 48	8.6	352
137	Application of Generative Autoencoder in De Novo Molecular Design. <i>Molecular Informatics</i> , 2018 , 37, 1700123	3.8	174
136	Accurate Intermolecular Potentials Obtained from Molecular Wave Functions: Bridging the Gap between Quantum Chemistry and Molecular Simulations. <i>Chemical Reviews</i> , 2000 , 100, 4087-108	68.1	160
135	Structure and vibrational dynamics of the benzene dimer. <i>Journal of Chemical Physics</i> , 1999 , 111, 572-5	83 .9	140
134	Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. <i>Chemistry and Biology</i> , 2004 , 11, 691-701		114
133	On the Integration of Drug Design Methods for Drug Repurposing. <i>Frontiers in Pharmacology</i> , 2017 , 8, 298	5.6	109
132	Uracil Dimer: Potential Energy and Free Energy Surfaces. Ab Initio beyond Hartree Hock and Empirical Potential Studies. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 6921-6926	2.8	100
131	Beyond size, ionization state, and lipophilicity: influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 3667-77	8.3	96
130	Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. <i>Proteins: Structure, Function and Bioinformatics</i> , 2008 , 71, 599-620	4.2	89
129	Computational prediction of chemical reactions: current status and outlook. <i>Drug Discovery Today</i> , 2018 , 23, 1203-1218	8.8	83
128	HTS explorer. Journal of Cheminformatics, 2014, 6,	8.6	78
127	Hit series selection in noisy HTS data: clustering techniques, statistical tests and data visualisations. Journal of Cheminformatics, 2014 , 6,	8.6	78
126	Benzene trimer and benzene tetramer: Structures and properties determined by the nonempirical model (NEMO) potential calibrated from the CCSD(T) benzene dimer energies. <i>Journal of Chemical Physics</i> , 1999 , 110, 5758-5762	3.9	78
125	A de novo molecular generation method using latent vector based generative adversarial network. Journal of Cheminformatics, 2019 , 11, 74	8.6	78
124	Target prediction utilising negative bioactivity data covering large chemical space. <i>Journal of Cheminformatics</i> , 2015 , 7, 51	8.6	76
123	Randomized SMILES strings improve the quality of molecular generative models. <i>Journal of Cheminformatics</i> , 2019 , 11, 71	8.6	74

122	Minimum information about a bioactive entity (MIABE). <i>Nature Reviews Drug Discovery</i> , 2011 , 10, 661-9	64.1	69
121	Exploring the GDB-13 chemical space using deep generative models. <i>Journal of Cheminformatics</i> , 2019 , 11, 20	8.6	67
120	Multifingerprint based similarity searches for targeted class compound selection. <i>Journal of Chemical Information and Modeling</i> , 2006 , 46, 1201-13	6.1	59
119	Molecular representations in Al-driven drug discovery: a review and practical guide. <i>Journal of Cheminformatics</i> , 2020 , 12, 56	8.6	59
118	BIGCHEM: Challenges and Opportunities for Big Data Analysis in Chemistry. <i>Molecular Informatics</i> , 2016 , 35, 615-621	3.8	59
117	ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics. <i>Journal of Cheminformatics</i> , 2017 , 9, 17	8.6	56
116	Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 8667-8682	8.3	53
115	Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction. <i>Journal of Cheminformatics</i> , 2020 , 12, 1	8.6	51
114	Investigation of the relationship between topology and selectivity for druglike molecules. <i>Journal of Medicinal Chemistry</i> , 2010 , 53, 7709-14	8.3	50
113	Comparison of molecular fingerprint methods on the basis of biological profile data. <i>Journal of Chemical Information and Modeling</i> , 2009 , 49, 338-47	6.1	48
112	In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms. <i>Journal of Molecular Graphics and Modelling</i> , 2011 , 29, 985-95	2.8	48
111	Intermolecular Potential for the 1,2-Dimethoxyethane Water Complex. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 6950-6957		48
110	Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. <i>Nature Machine Intelligence</i> , 2020 , 2, 254-265	22.5	47
109	SMILES-based deep generative scaffold decorator for de-novo drug design. <i>Journal of Cheminformatics</i> , 2020 , 12, 38	8.6	45
108	On the origin of the gauche effect. A quantum chemical study of 1,2-difluoroethane. <i>Chemical Physics Letters</i> , 1997 , 265, 19-23	2.5	45
107	Prediction of CNS activity of compound libraries using substructure analysis. <i>Journal of Chemical Information and Computer Sciences</i> , 2003 , 43, 155-60		43
106	High-throughput, in silico prediction of aqueous solubility based on one- and two-dimensional descriptors. <i>Journal of Chemical Information and Computer Sciences</i> , 2002 , 42, 1247-9		43
105	REINVENT 2.0: An AI Tool for De Novo Drug Design. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 5918-5922	6.1	42

104	Applying Mondrian Cross-Conformal Prediction To Estimate Prediction Confidence on Large Imbalanced Bioactivity Data Sets. <i>Journal of Chemical Information and Modeling</i> , 2017 , 57, 1591-1598	6.1	38
103	Adsorption of water on the NaCl(001) surface. III. Monte Carlo simulations at ambient temperatures. <i>Journal of Chemical Physics</i> , 2000 , 112, 6827-6833	3.9	38
102	Ligand-based target prediction with signature fingerprints. <i>Journal of Chemical Information and Modeling</i> , 2014 , 54, 2647-53	6.1	35
101	Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. <i>Chemical Science</i> , 2020 , 11, 154-168	9.4	35
100	A method to calculate the probability distribution for systems with large energy barriers. <i>Chemical Physics</i> , 1996 , 213, 63-76	2.3	34
99	AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. <i>Journal of Cheminformatics</i> , 2020 , 12, 70	8.6	34
98	Heart regeneration: opportunities and challenges for drug discovery with novel chemical and therapeutic methods or agents. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4056-75	16.4	32
97	A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries. <i>QSAR and Combinatorial Science</i> , 2002 , 21, 249-256		32
96	Adsorption of water on NaCl(001). I. Intermolecular potentials and low temperature structures. Journal of Chemical Physics, 1999 , 110, 12089-12096	3.9	32
95	Physicochemical property profiles of marketed drugs, clinical candidates and bioactive compounds. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009 , 19, 6943-7	2.9	31
94	A comparative analysis of the molecular topologies for drugs, clinical candidates, natural products, human metabolites and general bioactive compounds. <i>MedChemComm</i> , 2012 , 3, 312-321	5	30
93	Adsorption of water on the MgO(001) surface. <i>Surface Science</i> , 1999 , 437, 239-248	1.8	29
92	Annotating Human P-Glycoprotein Bioassay Data. <i>Molecular Informatics</i> , 2012 , 31, 599-609	3.8	27
91	Developments in computational studies of crystallization and morphology applied to urea. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 3017-3027	3.6	27
90	Hoogsteen and Stacked Structures of the 9-Methyladenine IIII-Methylthymine Pair Are Populated Equally at Experimental Conditions: Ab Initio and Molecular Dynamics Study. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1197-1202	2.8	27
89	Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. <i>Journal of Lipid Research</i> , 2018 , 59, 830-842	6.3	26
88	Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research. <i>Frontiers in Pharmacology</i> , 2019 , 10, 1303	5.6	26
87	Exploring in silico prediction of the unbound brain-to-plasma drug concentration ratio: model validation, renewal, and interpretation. <i>Journal of Pharmaceutical Sciences</i> , 2015 , 104, 1197-206	3.9	24

86	Understanding Cytotoxicity and Cytostaticity in a High-Throughput Screening Collection. <i>ACS Chemical Biology</i> , 2016 , 11, 3007-3023	4.9	22	
85	Monte Carlo Simulation Study of Short Poly(ethylene oxide) Chains at Different Concentrations. Journal of Physical Chemistry B, 1997 , 101, 1631-1633	3.4	22	
84	Cheminformatics in Drug Discovery, an Industrial Perspective. <i>Molecular Informatics</i> , 2018 , 37, e180004	413.8	22	
83	Has Drug Design Augmented by Artificial Intelligence Become a Reality?. <i>Trends in Pharmacological Sciences</i> , 2019 , 40, 806-809	13.2	20	
82	Memory-assisted reinforcement learning for diverse molecular de novo design. <i>Journal of Cheminformatics</i> , 2020 , 12, 68	8.6	20	
81	Molecular topology analysis of the differences between drugs, clinical candidate compounds, and bioactive molecules. <i>Journal of Chemical Information and Modeling</i> , 2010 , 50, 2141-50	6.1	19	
80	Orthologue chemical space and its influence on target prediction. <i>Bioinformatics</i> , 2018 , 34, 72-79	7.2	18	
79	Graph networks for molecular design. <i>Machine Learning: Science and Technology</i> , 2021 , 2, 025023	5.1	18	
78	Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold[hopping capability. <i>Journal of Cheminformatics</i> , 2019 , 11, 54	8.6	17	
77	Phenotypic Screen for Cardiac Regeneration Identifies Molecules with Differential Activity in Human Epicardium-Derived Cells versus Cardiac Fibroblasts. <i>ACS Chemical Biology</i> , 2017 , 12, 132-141	4.9	16	
76	Does Big DataSexist in medicinal chemistry, and if so, how can it be harnessed?. <i>Future Medicinal Chemistry</i> , 2016 , 8, 1801-1806	4.1	15	
75	Identification of Compounds That Interfere with High-Throughput Screening Assay Technologies. <i>ChemMedChem</i> , 2019 , 14, 1795-1802	3.7	15	
74	Open PHACTS computational protocols for target validation of cellular phenotypic screens: knowing the knowns. <i>MedChemComm</i> , 2016 , 7, 1237-1244	5	15	
73	Retrosynthetic accessibility score (RAscore) - rapid machine learned synthesizability classification from AI driven retrosynthetic planning. <i>Chemical Science</i> , 2021 , 12, 3339-3349	9.4	15	
72	On the Relationship between Molecular Hit Rates in High-Throughput Screening and Molecular Descriptors. <i>Journal of Biomolecular Screening</i> , 2014 , 19, 727-37		14	
71	Methylated uracil dimers: potential energy and free energy surfaces. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 2419-2424	3.6	14	
70	AI-assisted synthesis prediction. <i>Drug Discovery Today: Technologies</i> , 2019 , 32-33, 65-72	7.1	14	
69	Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 962-972	6.1	14	

68	The convergence of artificial intelligence and chemistry for improved drug discovery. <i>Future Medicinal Chemistry</i> , 2018 , 10, 2573-2576	4.1	14
67	Using the BioAssay Ontology for analyzing high-throughput screening data. <i>Journal of Biomolecular Screening</i> , 2015 , 20, 402-15		13
66	Investigating Pharmacological Similarity by Charting Chemical Space. <i>Journal of Chemical Information and Modeling</i> , 2015 , 55, 2375-90	6.1	13
65	Systematic exploration of dual-acting modulators from a combined medicinal chemistry and biology perspective. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 1197-210	8.3	13
64	ProSAR: a new methodology for combinatorial library design. <i>Journal of Chemical Information and Modeling</i> , 2009 , 49, 603-14	6.1	12
63	A Monte Carlo simulation study of the temperature dependence for the conformation distribution of 1,2-dimethoxyethane in water. <i>Journal of Chemical Physics</i> , 1997 , 106, 2411-2417	3.9	12
62	Theoretical study of intermolecular potential energy surface for HCl dimer: Example of nonspherical atom 8 to memory to make the memory of th	3.5	12
61	Industry-scale application and evaluation of deep learning for drug target prediction. <i>Journal of Cheminformatics</i> , 2020 , 12, 26	8.6	12
60	Artificial intelligence and automation in computer aided synthesis planning. <i>Reaction Chemistry and Engineering</i> , 2021 , 6, 27-51	4.9	11
59	Molecular optimization by capturing chemists intuition using deep neural networks. <i>Journal of Cheminformatics</i> , 2021 , 13, 26	8.6	11
58	Uncertainty quantification in drug design. <i>Drug Discovery Today</i> , 2021 , 26, 474-489	8.8	10
57	"Ring Breaker": Neural Network Driven Synthesis Prediction of the Ring System Chemical Space. Journal of Medicinal Chemistry, 2020 , 63, 8791-8808	8.3	9
56	The Role of Historical Bioactivity Data in the Deconvolution of Phenotypic Screens. <i>Journal of Biomolecular Screening</i> , 2014 , 19, 696-706		9
55	Comparative Study of Deep Generative Models on Chemical Space Coverage. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 2572-2581	6.1	9
54	Utility of Resazurin, Horseradish Peroxidase, and NMR Assays to Identify Redox-Related False-Positive Behavior in High-Throughput Screens. <i>Assay and Drug Development Technologies</i> , 2018 , 16, 171-191	2.1	8
53	Theory of Poly(ethylene glycol) in Solution. ACS Symposium Series, 1997, 16-30	0.4	8
52	Comparison of Chemical Structure and Cell Morphology Information for Multitask Bioactivity Predictions. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 1444-1456	6.1	8
51	A comparison between the NEMO intermolecular water potential and ab initio quantum chemical calculations for the water trimer tetramer. <i>Molecular Physics</i> , 1997 , 90, 277-287	1.7	7

(2011-2019)

50	High-content phenotypic assay for proliferation of human iPSC-derived cardiomyocytes identifies L-type calcium channels as targets. <i>Journal of Molecular and Cellular Cardiology</i> , 2019 , 127, 204-214	5.8	7
49	Multisolvent Models for Solvation Free Energy Predictions Using 3D-RISM Hydration Thermodynamic Descriptors. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 2977-2988	6.1	6
48	Innovation in Small-Molecule-Druggable Chemical Space: Where are the Initial Modulators of New Targets Published?. <i>Journal of Chemical Information and Modeling</i> , 2017 , 57, 2741-2753	6.1	5
47	Accurate Hit Estimation for Iterative Screening Using Venn-ABERS Predictors. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 1230-1237	6.1	5
46	Compound Properties and their Influence on Drug Quality 2015 , 379-393		5
45	Practical notes on building molecular graph generative models. <i>Applied AI Letters</i> , 2020 , 1,	1.2	5
44	Axl receptor tyrosine kinase is a regulator of apolipoprotein E. <i>Molecular Brain</i> , 2020 , 13, 66	4.5	5
43	Transporter assays and assay ontologies: useful tools for drug discovery. <i>Drug Discovery Today: Technologies</i> , 2014 , 12, e47-54	7.1	4
42	Comparison of Scaling Methods to Obtain Calibrated Probabilities of Activity for Protein-Ligand Predictions. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 4546-4559	6.1	4
41	Collaborative virtual screening to elaborate an imidazo[1,2-]pyridine hit series for visceral leishmaniasis. <i>RSC Medicinal Chemistry</i> , 2021 , 12, 384-393	3.5	4
40	Extending Protein Target Prediction Models to Include Functional Effects. <i>Frontiers in Pharmacology</i> , 2018 , 9, 613	5.6	3
39	Mining Molecular Pharmacological Effects from Biomedical Text: a Case Study for Eliciting Anti-Obesity/Diabetes Effects of Chemical Compounds. <i>Molecular Informatics</i> , 2014 , 33, 332-42	3.8	3
38	On the Relation between Retention Indexes and the Interaction between the Solute and the Column in GasIliquid Chromatography. <i>Journal of Chemical Information and Computer Sciences</i> , 1996 , 36, 1153-1161		3
37	Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides <i>Communications Biology</i> , 2022 , 5, 185	6.7	3
36	Evaluation guidelines for machine learning tools in the chemical sciences. Nature Reviews Chemistry,	34.6	3
35	Herzregeneration: Chancen und Aufgaben fildie Wirkstoff-Forschung mit neuartigen chemischen und therapeutischen Methoden oder Agentien. <i>Angewandte Chemie</i> , 2014 , 126, 4138-4159	3.6	2
34	Merged Multiple Ligands. Methods and Principles in Medicinal Chemistry, 2017, 247-274	0.4	2
33	Combinatorial library design from reagent pharmacophore fingerprints. <i>Methods in Molecular Biology</i> , 2011 , 685, 135-52	1.4	2

32	Has Artificial Intelligence Impacted Drug Discovery?. Methods in Molecular Biology, 2022, 2390, 153-176	1.4	2
31	SMILES-Based Deep Generative Scaffold Decorator for De-Novo Drug Design		2
30	A De Novo Molecular Generation Method Using Latent Vector Based Generative Adversarial Network		2
29	A De Novo Molecular Generation Method Using Latent Vector Based Generative Adversarial Network		2
28	Direct Steering of de novo Molecular Generation using Descriptor Conditional Recurrent Neural Networks (cRNNs)		2
27	Direct Steering of de novo Molecular Generation using Descriptor Conditional Recurrent Neural Networks (cRNNs)		2
26	Building Attention and Edge Convolution Neural Networks for Bioactivity and Physical-Chemical Property Prediction		2
25	Exploring the GDB-13 Chemical Space Using Deep Generative Models		2
24	Randomized SMILES Strings Improve the Quality of Molecular Generative Models		2
23	AiZynthFinder: A Fast Robust and Flexible Open-Source Software for Retrosynthetic Planning		2
22	Pluripotent Stem Cell-Derived Hepatocytes Phenotypic Screening Reveals Small Molecules Targeting the CDK2/4-C/EBP∯DGAT2 Pathway Preventing ER-Stress Induced Lipid Accumulation. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
21	Bioinformatic Approaches in the Understanding of Mechanism of Action (MoA). <i>Methods and Principles in Medicinal Chemistry</i> , 2019 , 323-363	0.4	2
20	Public-Private Partnerships: Compound and Data Sharing in Drug Discovery and Development. <i>SLAS Discovery</i> , 2021 , 26, 604-619	3.4	2
19	Transformer-based molecular optimization beyond matched molecular pairs <i>Journal of Cheminformatics</i> , 2022 , 14, 18	8.6	2
18	In Silico Tools for Predicting Brain Exposure of Drugs 2015 , 167-187		1
17	Designing a Combinatorial Library by Using Reagent Pharmacophore Fingerprint. <i>QSAR and Combinatorial Science</i> , 2009 , 28, 840-844		1
16	DockStream: a docking wrapper to enhance de novo molecular design. <i>Journal of Cheminformatics</i> , 2021 , 13, 89	8.6	1
15	Attention and Edge Memory Convolution for Bioactivity Prediction. <i>Lecture Notes in Computer Science</i> , 2019 , 752-757	0.9	1

LIST OF PUBLICATIONS

14	Neural Network Guided Tree-Search Policies for Synthesis Planning. <i>Lecture Notes in Computer Science</i> , 2019 , 721-724	0.9	1
13	Improving Deep Generative Models with Randomized SMILES. <i>Lecture Notes in Computer Science</i> , 2019 , 747-751	0.9	1
12	De novo design with deep generative models based on 3D similarity scoring. <i>Bioorganic and Medicinal Chemistry</i> , 2021 , 44, 116308	3.4	1
11	Investigation of the influence of molecular topology on ligand binding. <i>Journal of Molecular Graphics and Modelling</i> , 2013 , 40, 22-9	2.8	0
10	Fast prediction of distances between synthetic routes with deep learning. <i>Machine Learning: Science and Technology</i> , 2022 , 3, 015018	5.1	О
9	Artificial applicability labels for improving policies in retrosynthesis prediction. <i>Machine Learning: Science and Technology</i> , 2021 , 2, 017001	5.1	0
8	Clustering of Synthetic Routes Using Tree Edit Distance. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 3899-3907	6.1	О
7	Probabilistic Random Forest improves bioactivity predictions close to the classification threshold by taking into account experimental uncertainty. <i>Journal of Cheminformatics</i> , 2021 , 13, 62	8.6	O
6	11th German Conference on Chemoinformatics (GCC 2015): Fulda, Germany. 8-10 November 2015. Journal of Cheminformatics, 2016 , 8, 18	8.6	
5	Shouldn £ enantiomeric purity be included in the S minimum information about a bioactive entity? Response from the MIABE group. <i>Nature Reviews Drug Discovery</i> , 2012 , 11, 730-730	64.1	
4	An Investigation of the Relationship Between Molecular Topology and CYP3A4 Inhibition for Drug-like Compounds. <i>Molecular Informatics</i> , 2012 , 31, 719-23	3.8	
3	Chemistry-Driven Target Identification. <i>Methods and Principles in Medicinal Chemistry</i> , 2016 , 63-92	0.4	
2	An Introduction to Systems Medicine Applied to Drug Discovery 2021 , 128		
1	Parallel Capsule Networks for Classification of White Blood Cells. <i>Lecture Notes in Computer Science</i> , 2021 , 743-752	0.9	