Simon N Waddington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9560816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell, 2008, 132, 397-409.	28.9	573
2	Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood, 2006, 107, 2653-2661.	1.4	366
3	Long-term Safety and Efficacy Following Systemic Administration of a Self-complementary AAV Vector Encoding Human FIX Pseudotyped With Serotype 5 and 8 Capsid Proteins. Molecular Therapy, 2011, 19, 876-885.	8.2	280
4	Mitochondria and Quality Control Defects in a Mouse Model of Gaucher Disease—Links to Parkinson's Disease. Cell Metabolism, 2013, 17, 941-953.	16.2	277
5	Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood, 2006, 108, 2554-2561.	1.4	256
6	Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood, 2013, 121, 3335-3344.	1.4	236
7	Oncogenesis Following Delivery of a Nonprimate Lentiviral Gene Therapy Vector to Fetal and Neonatal Mice. Molecular Therapy, 2005, 12, 763-771.	8.2	224
8	Stable Gene Transfer to Muscle Using Non-integrating Lentiviral Vectors. Molecular Therapy, 2007, 15, 1947-1954.	8.2	165
9	Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood, 2011, 117, 798-807.	1.4	163
10	The CD46-Jagged1 interaction is critical for human TH1 immunity. Nature Immunology, 2012, 13, 1213-1221.	14.5	163
11	Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood, 2009, 114, 965-971.	1.4	158
12	Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood, 2004, 104, 2714-2721.	1.4	132
13	NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming. Cell Reports, 2016, 14, 1883-1891.	6.4	132
14	Widespread Distribution and Muscle Differentiation of Human Fetal Mesenchymal Stem Cells After Intrauterine Transplantation in Dystrophic <i>mdx</i> Mouse. Stem Cells, 2007, 25, 875-884.	3.2	118
15	Fetal gene therapy for neurodegenerative disease of infants. Nature Medicine, 2018, 24, 1317-1323.	30.7	117
16	In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood, 2003, 101, 1359-1366.	1.4	109
17	Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood, 2010, 116, 2656-2664.	1.4	96
18	Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia, 2010, 58, 11-28.	4.9	95

#	Article	IF	CITATIONS
19	Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Therapy, 2008, 15, 1593-1605.	4.5	91
20	Activator protein 1 is a key terminal mediator of inflammationâ€ i nduced preterm labor in mice. FASEB Journal, 2014, 28, 2358-2368.	0.5	91
21	Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Therapy, 2009, 16, 509-520.	4.5	89
22	Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. Journal of Inherited Metabolic Disease, 2017, 40, 497-517.	3.6	89
23	Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB Journal, 2011, 25, 3505-3518.	0.5	84
24	A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency. Brain, 2018, 141, 2014-2031.	7.6	80
25	Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Therapy, 2003, 10, 1234-1240.	4.5	73
26	The Cyclopentenone 15-Deoxy-Δ12,14-Prostaglandin J2 Delays Lipopolysaccharide-Induced Preterm Delivery and Reduces Mortality in the Newborn Mouse. Endocrinology, 2009, 150, 699-706.	2.8	73
27	Effect of Neutralizing Sera on Factor X-Mediated Adenovirus Serotype 5 Gene Transfer. Journal of Virology, 2009, 83, 479-483.	3.4	72
28	Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle, 2009, 8, 1069-1079.	2.6	71
29	Targeting of Adenovirus Serotype 5 (Ad5) and 5/47 Pseudotyped Vectors In Vivo: Fundamental Involvement of Coagulation Factors and Redundancy of CAR Binding by Ad5. Journal of Virology, 2007, 81, 9568-9571.	3.4	70
30	Increased Secretion of Lipoproteins in Transgenic Mice Expressing Human D374Y <i>PCSK9</i> Under Physiological Genetic Control. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1333-1339.	2.4	70
31	β-Glucosidase 2 (GBA2) Activity and Imino Sugar Pharmacology. Journal of Biological Chemistry, 2013, 288, 26052-26066.	3.4	69
32	Specific Lipopolysaccharide Serotypes Induce Differential Maternal and Neonatal Inflammatory Responses in a Murine Model of Preterm Labor. American Journal of Pathology, 2015, 185, 2390-2401.	3.8	67
33	Ultrasound-Guided Percutaneous Delivery of Adenoviral Vectors Encoding theβ-Galactosidase and Human Factor IX Genes to Early Gestation Fetal SheepIn Utero. Human Gene Therapy, 2003, 14, 353-364.	2.7	66
34	Stable Human FIX Expression After 0.9G Intrauterine Gene Transfer of Self-complementary Adeno-associated Viral Vector 5 and 8 in Macaques. Molecular Therapy, 2011, 19, 1950-1960.	8.2	66
35	Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics. BMC Medicine, 2016, 14, 86.	5.5	63
36	Influence of Coagulation Factor Zymogens on the Infectivity of Adenoviruses Pseudotyped with Fibers from Subgroup D. Journal of Virology, 2007, 81, 3627-3631.	3.4	62

#	Article	IF	CITATIONS
37	The Influence of Blood on In Vivo Adenovirus Bio-distribution and Transduction. Molecular Therapy, 2007, 15, 1410-1416.	8.2	62
38	Widespread and efficient marker gene expression in the airway epithelia of fetal sheep after minimally invasive tracheal application of recombinant adenovirus in utero. Gene Therapy, 2004, 11, 70-78.	4.5	60
39	Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver. Journal of Molecular Medicine, 2011, 89, 515-529.	3.9	60
40	Sustained delivery of therapeutic concentrations of human clotting factor IX - a comparison of adenoviral and AAV vectors administeredin utero. Journal of Gene Medicine, 2002, 4, 46-53.	2.8	59
41	Expanding the phenotype in argininosuccinic aciduria: need for new therapies. Journal of Inherited Metabolic Disease, 2017, 40, 357-368.	3.6	55
42	Permanent partial phenotypic correction and tolerance in a mouse model of hemophilia B by stem cell gene delivery of human factor IX. Gene Therapy, 2006, 13, 117-126.	4.5	54
43	Systemic delivery of scAAV9 in fetal macaques facilitates neuronal transduction of the central and peripheral nervous systems. Gene Therapy, 2013, 20, 69-83.	4.5	54
44	Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis. Nature Communications, 2016, 7, 12111.	12.8	54
45	Ascending Vaginal Infection Using Bioluminescent Bacteria Evokes Intrauterine Inflammation, Preterm Birth, and Neonatal Brain Injury in Pregnant Mice. American Journal of Pathology, 2018, 188, 2164-2176.	3.8	52
46	Vps33b is crucial for structural and functional hepatocyte polarity. Journal of Hepatology, 2017, 66, 1001-1011.	3.7	51
47	AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathology in a mouse model of Niemann–Pick type C1 disease. Human Molecular Genetics, 2018, 27, 3079-3098.	2.9	51
48	Age-Related Seroprevalence of Antibodies Against AAV-LK03 in a UK Population Cohort. Human Gene Therapy, 2019, 30, 79-87.	2.7	51
49	Gene Therapy Progress and Prospects: Fetal gene therapy – first proofs of concept – some adverse effects. Gene Therapy, 2005, 12, 1601-1607.	4.5	49
50	Lentiviral transduction of the murine lung provides efficient pseudotype and developmental stage-dependent cell-specific transgene expression. Gene Therapy, 2008, 15, 1167-1175.	4.5	49
51	Hyperactive PiggyBac Transposons for Sustained and Robust Liver-targeted Gene Therapy. Molecular Therapy, 2014, 22, 1614-1624.	8.2	48
52	L-arginine depletion inhibits glomerular nitric oxide synthesis and exacerbates rat nephrotoxic nephritis. Kidney International, 1996, 49, 1090-1096.	5.2	47
53	Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy. Gene Therapy, 2004, 11, 1117-1125.	4.5	46
54	Delivery and long-term expression of a 135 kbLDLR genomic DNA locusin vivo by hydrodynamic tail vein injection. Journal of Gene Medicine, 2007, 9, 488-497.	2.8	45

#	Article	IF	CITATIONS
55	Recombinant Adeno-Associated Virus-Mediated <i>In Utero</i> Gene Transfer Gives Therapeutic Transgene Expression in the Sheep. Human Gene Therapy, 2011, 22, 419-426.	2.7	44
56	AAV-mediated gene transfer in the perinatal period results in expression of FVII at levels that protect against fatal spontaneous hemorrhage. Blood, 2012, 119, 957-966.	1.4	44
57	Fetal and neonatal gene therapy: benefits and pitfalls. Gene Therapy, 2004, 11, S92-S97.	4.5	42
58	LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives. International Archive of Medicine, 2010, 3, 36.	1.2	42
59	Complement inhibition rescued mice allowing observation of transgene expression following intraportal delivery of baculovirus in mice. Journal of Gene Medicine, 2005, 7, 325-333.	2.8	41
60	Influence of Coagulation Factor X on In Vitro and In Vivo Gene Delivery by Adenovirus (Ad) 5, Ad35, and Chimeric Ad5/Ad35 Vectors. Molecular Therapy, 2009, 17, 1683-1691.	8.2	41
61	The differentiation and engraftment potential of mouse hematopoietic stem cells is maintained after bio-electrospray. Analyst, The, 2010, 135, 157-164.	3.5	41
62	In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Scientific Reports, 2015, 5, 11842.	3.3	41
63	Lentiviral vectors can be used for full-length dystrophin gene therapy. Scientific Reports, 2017, 7, 79.	3.3	41
64	In Utero gene therapy: current challenges and perspectives. Molecular Therapy, 2005, 11, 661-676.	8.2	40
65	Arginase AI Is Upregulated in Acute Immune Complex-Induced Inflammation. Biochemical and Biophysical Research Communications, 1998, 247, 84-87.	2.1	39
66	Factors Influencing Adenovirus-Mediated Airway Transduction in Fetal Mice. Molecular Therapy, 2005, 12, 484-492.	8.2	38
67	Flexible polyurethane foams formulated with polyols derived from waste carbon dioxide. Journal of Applied Polymer Science, 2016, 133, .	2.6	38
68	The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse. Biology of Reproduction, 2016, 95, 125-125.	2.7	35
69	Luciferin Detection After Intranasal Vector Delivery Is Improved by Intranasal Rather Than Intraperitoneal Luciferin Administration. Human Gene Therapy, 2008, 19, 1050-1056.	2.7	34
70	Cloud computing in e-Science: research challenges andÂopportunities. Journal of Supercomputing, 2014, 70, 408-464.	3.6	34
71	Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer. Nature Communications, 2018, 9, 3505.	12.8	34
72	Anti-GBM glomerulonephritis in mice lacking nitric oxide synthase type 2 Rapid Communication. Kidney International, 1998, 53, 932-936.	5.2	33

#	Article	IF	CITATIONS
73	A Broad Overview and Review of CRISPR-Cas Technology and Stem Cells. Current Stem Cell Reports, 2016, 2, 9-20.	1.6	33
74	Progesterone, the maternal immune system and the onset of parturition in the mouseâ€. Biology of Reproduction, 2018, 98, 376-395.	2.7	33
75	Evaluation of prenatal intra-amniotic LAMB3 gene delivery in a mouse model of Herlitz disease. Gene Therapy, 2006, 13, 1665-1676.	4.5	32
76	Functional characterization of a 13-bp deletion (c15221510del13) in the promoter of the von Willebrand factor gene in type 1 von Willebrand disease. Blood, 2010, 116, 3645-3652.	1.4	32
77	Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy. Molecular Therapy, 2017, 25, 1790-1804.	8.2	32
78	In Utero Gene Therapy Consensus Statement from the IFeTIS. Molecular Therapy, 2019, 27, 705-707.	8.2	32
79	Intra-amniotic Delivery of CFTR-expressing Adenovirus Does Not Reverse Cystic Fibrosis Phenotype in Inbred CFTR-knockout Mice. Molecular Therapy, 2008, 16, 819-824.	8.2	31
80	In utero administration of Ad5 and AAV pseudotypes to the fetal brain leads to efficient, widespread and long-term gene expression. Gene Therapy, 2012, 19, 936-946.	4.5	31
81	Systemic gene delivery following intravenous administration of AAV9 to fetal and neonatal mice and late-gestation nonhuman primates. FASEB Journal, 2015, 29, 3876-3888.	0.5	31
82	Clinically Applicable Procedure for Gene Delivery to Fetal Gut by Ultrasound-Guided Gastric Injection: Toward Prenatal Prevention of Early-Onset Intestinal Diseases. Human Gene Therapy, 2006, 17, 767-779.	2.7	30
83	Current therapies for the soluble lysosomal forms of neuronal ceroid lipofuscinosis. Biochemical Society Transactions, 2010, 38, 1484-1488.	3.4	30
84	Desmin-regulated Lentiviral Vectors for Skeletal Muscle Gene Transfer. Molecular Therapy, 2010, 18, 601-608.	8.2	30
85	In Utero Transfer of Adeno-Associated Viral Vectors Produces Long-Term Factor IX Levels in a Cynomolgus Macaque Model. Molecular Therapy, 2017, 25, 1843-1853.	8.2	30
86	Gene Delivery of a Mutant TGFβ3 Reduces Markers of Scar Tissue Formation After Cutaneous Wounding. Molecular Therapy, 2010, 18, 2104-2111.	8.2	29
87	Lentiviral vectors can be used for full-length dystrophin gene therapy. Scientific Reports, 2017, 7, 44775.	3.3	29
88	Increased glucocerebrosidase (GBA) 2 activity in GBA1 deficient mice brains and in Gaucher leucocytes. Journal of Inherited Metabolic Disease, 2013, 36, 869-872.	3.6	28
89	Inducible Nitric Oxide Synthase Induction in Thy 1 Glomerulonephritis Is Complement and Reactive Oxygen Species Dependent. Nephron Experimental Nephrology, 1999, 7, 26-34.	2.2	27
90	The Hopes and Fears of In Utero Gene Therapy for Genetic Disease—A Review. Placenta, 2003, 24, S114-S121.	1.5	27

#	Article	IF	CITATIONS
91	Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules, 2021, 11, 611.	4.0	27
92	Exon Skipping of Hepatic APOB Pre-mRNA With Splice-switching Oligonucleotides Reduces LDL Cholesterol In Vivo. Molecular Therapy, 2013, 21, 602-609.	8.2	26
93	Pseudotyping the adenovirus serotype 5 capsid with both the fibre and penton of serotype 35 enhances vascular smooth muscle cell transduction. Gene Therapy, 2013, 20, 1158-1164.	4.5	25
94	Gene therapy restores dopamine transporter expression and ameliorates pathology in iPSC and mouse models of infantile parkinsonism. Science Translational Medicine, 2021, 13, .	12.4	25
95	Impaired cellular bioenergetics caused by GBA1 depletion sensitizes neurons to calcium overload. Cell Death and Differentiation, 2020, 27, 1588-1603.	11.2	24
96	Systemic AAV9 gene therapy using the synapsin I promoter rescues a mouse model of neuronopathic Gaucher disease but with limited cross-correction potential to astrocytes. Human Molecular Genetics, 2020, 29, 1933-1949.	2.9	24
97	Neonatal Gene Therapy of Glycogen Storage Disease Type Ia Using a Feline Immunodeficiency Virus–based Vector. Molecular Therapy, 2010, 18, 1592-1598.	8.2	23
98	Proofâ€ofâ€concept: neonatal intravenous injection of adenoâ€associated virus vectors results in successful transduction of myenteric and submucosal neurons in the mouse small and large intestine. Neurogastroenterology and Motility, 2016, 28, 299-305.	3.0	23
99	NF-κB Activity Initiates Human ESC-Derived Neural Progenitor Cell Differentiation by Inducing a Metabolic Maturation Program. Stem Cell Reports, 2018, 10, 1766-1781.	4.8	23
100	Production of lentiviral vectors using novel, enzymatically produced, linear DNA. Gene Therapy, 2019, 26, 86-92.	4.5	22
101	The Fetal Mouse Is a Sensitive Genotoxicity Model That Exposes Lentiviral-associated Mutagenesis Resulting in Liver Oncogenesis. Molecular Therapy, 2013, 21, 324-337.	8.2	21
102	Specific inhibition of c-Jun N-terminal kinase delays preterm labour and reduces mortality. Reproduction, 2015, 150, 269-277.	2.6	21
103	Therapeutic expression of human clotting factors IX and × following adenoâ€associated viral vectorâ€mediated intrauterine gene transfer in earlyâ€gestation fetal macaques. FASEB Journal, 2019, 33, 3954-3967.	0.5	21
104	Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys. Molecular Therapy - Methods and Clinical Development, 2021, 23, 135-146.	4.1	21
105	Targeting the respiratory muscles of fetal sheep for prenatal gene therapy for Duchenne muscular dystrophy. American Journal of Obstetrics and Gynecology, 2005, 193, 1105-1109.	1.3	19
106	Fetal gene therapy: recent advances and current challenges. Expert Opinion on Biological Therapy, 2011, 11, 1257-1271.	3.1	19
107	Cervical Gene Delivery of the Antimicrobial Peptide, Human β-Defensin (HBD)-3, in a Mouse Model of Ascending Infection-Related Preterm Birth. Frontiers in Immunology, 2020, 11, 106.	4.8	19
108	No evidence for germ-line transmission following prenatal and early postnatal AAV-mediated gene delivery. Journal of Gene Medicine, 2005, 7, 630-637.	2.8	18

#	Article	IF	CITATIONS
109	Perinatal Gene Transfer to the Liver. Current Pharmaceutical Design, 2011, 17, 2528-2541.	1.9	18
110	Perinatal systemic gene delivery using adeno-associated viral vectors. Frontiers in Molecular Neuroscience, 2014, 7, 89.	2.9	18
111	Fetal and Maternal Safety Considerations for In Utero Therapy Clinical Trials: iFeTiS Consensus Statement. Molecular Therapy, 2020, 28, 2316-2319.	8.2	18
112	Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus. Gene Therapy, 2004, 11, 599-608.	4.5	17
113	Organ targeted prenatal gene therapy—how far are we?. Prenatal Diagnosis, 2011, 31, 720-734.	2.3	17
114	Transduction of Fetal Mice With a Feline Lentiviral Vector Induces Liver Tumors Which Exhibit an E2F Activation Signature. Molecular Therapy, 2014, 22, 59-68.	8.2	17
115	Arginase in glomerulonephritis. Kidney International, 2002, 61, 876-881.	5.2	16
116	Candidate Diseases for Prenatal Gene Therapy. , 2012, 891, 9-39.		16
117	Modifying inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector: Construction of optimised cassette for gene therapy of familial hypercholesterolemia. Non-coding RNA Research, 2019, 4, 1-14.	4.6	16
118	Impaired folate 1-carbon metabolism causes formate-preventable hydrocephalus in glycine decarboxylase–deficient mice. Journal of Clinical Investigation, 2020, 130, 1446-1452.	8.2	16
119	Beclinâ€1â€mediated activation of autophagy improves proximal and distal urea cycle disorders. EMBO Molecular Medicine, 2021, 13, e13158.	6.9	16
120	Fetal gene transfer. Current Opinion in Molecular Therapeutics, 2007, 9, 432-8.	2.8	16
121	The case for intrauterine gene therapy. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2012, 26, 697-709.	2.8	15
122	The power of bioluminescence imaging in understanding host-pathogen interactions. Methods, 2017, 127, 69-78.	3.8	15
123	High-efficiency transduction of spinal cord motor neurons by intrauterine delivery of integration-deficient lentiviral vectors. Journal of Controlled Release, 2018, 273, 99-107.	9.9	15
124	In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Scientific Reports, 2019, 9, 11592.	3.3	15
125	Continual conscious bioluminescent imaging in freely moving somatotransgenic mice. Scientific Reports, 2017, 7, 6374.	3.3	14
126	Induced nitric oxide (NO) synthesis in heterologous nephrotoxic nephritis; effects of selective inhibition in neutrophil-dependent glomerulonephritis. Clinical and Experimental Immunology, 1999, 118, 309-314.	2.6	13

#	Article	IF	CITATIONS
127	Evidence for Contribution of CD4+CD25+ Regulatory T Cells in Maintaining Immune Tolerance to Human Factor IX following Perinatal Adenovirus Vector Delivery. Journal of Immunology Research, 2015, 2015, 1-6.	2.2	13
128	Two-Level Automatic Adaptation of a Distributed User Profile for Personalized News Content Delivery. International Journal of Digital Multimedia Broadcasting, 2008, 2008, 1-21.	0.6	12
129	In utero gene transfer to the mouse nervous system. Biochemical Society Transactions, 2010, 38, 1489-1493.	3.4	12
130	Recent advances in fetal gene therapy. Therapeutic Delivery, 2011, 2, 461-469.	2.2	12
131	Arginase in Glomerulonephritis. Nephron Experimental Nephrology, 2000, 8, 128-134.	2.2	11
132	Delivering efficient liver-directed AAV-mediated gene therapy. Gene Therapy, 2017, 24, 263-264.	4.5	11
133	A comparison of intrauterine hemopoietic cell transplantation and lentiviral gene transfer for the correction of severe β-thalassemia in a HbbTh3/+ murine model. Experimental Hematology, 2018, 62, 45-55.	0.4	10
134	Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice. Scientific Reports, 2017, 7, 41874.	3.3	9
135	The Human Desmin Promoter Drives Robust Gene Expression for Skeletal Muscle Stem Cell-Mediated Gene Therapy. Current Gene Therapy, 2014, 14, 276-288.	2.0	9
136	Perinatal gene delivery to the CNS. Therapeutic Delivery, 2011, 2, 483-491.	2.2	8
137	Foamy Virus Vectors Transduce Visceral Organs and Hippocampal Structures following InÂVivo Delivery to Neonatal Mice. Molecular Therapy - Nucleic Acids, 2018, 12, 626-634.	5.1	7
138	Gene Therapy with Adeno-associated Virus for Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 234-236.	5.6	6
139	Enhancement of mouse hematopoietic stem/progenitor cell function via transient gene delivery using integration-deficient lentiviral vectors. Experimental Hematology, 2018, 57, 21-29.	0.4	6
140	Monitoring for Potential Adverse Effects of Prenatal Gene Therapy: Use of Large Animal Models with Relevance to Human Application. , 2012, 891, 291-328.		5
141	Regionally-Specified Second Trimester Fetal Neural Stem Cells Reveals Differential Neurogenic Programming. PLoS ONE, 2014, 9, e105985.	2.5	5
142	Vector Systems for Prenatal Gene Therapy: Choosing Vectors for Different Applications. Methods in Molecular Biology, 2012, 891, 41-53.	0.9	4
143	Animal Models for Prenatal Gene Therapy: Rodent Models for Prenatal Gene Therapy. , 2012, 891, 201-218.		4
144	Cloud repositories for research data – addressing the needs of researchers. Journal of Cloud Computing: Advances, Systems and Applications, 2013, 2, 13.	3.9	4

#	Article	IF	CITATIONS
145	Harmonising Research Reporting in the UK – Experiences and Outputs from UKRISS. Procedia Computer Science, 2014, 33, 207-214.	2.0	4
146	Urea Cycle Related Amino Acids Measured in Dried Bloodspots Enable Long-Term In Vivo Monitoring and Therapeutic Adjustment. Metabolites, 2019, 9, 275.	2.9	4
147	In Vitro and In Vivo Evaluation of Human Adenovirus Type 49 as a Vector for Therapeutic Applications. Viruses, 2021, 13, 1483.	3.3	4
148	Stable High Level Coagulation Factor VIII Expression In Vivo Following Gene Transfer Using a Novel Expression Cassette Encoding a More Potent FVIII Variant. Blood, 2010, 116, 250-250.	1.4	4
149	Rapid and inexpensive purification of adenovirus vectors using an optimised aqueous two-phase technology. Journal of Virological Methods, 2022, 299, 114305.	2.1	4
150	Genetic aspects and research development in haemostasis. Haemophilia, 2008, 14, 113-118.	2.1	3
151	The Concept of Prenatal Gene Therapy. , 2012, 891, 1-7.		3
152	Feasibility Study Into the Reporting of Research Information at a National Level Within the UK Higher Education Sector. New Review of Information Networking, 2013, 18, 74-105.	0.5	3
153	Bioluminescence Monitoring of Promoter Activity In Vitro and In Vivo. Methods in Molecular Biology, 2017, 1651, 49-64.	0.9	3
154	Generation of light-producing somatic-transgenic mice using adeno-associated virus vectors. Scientific Reports, 2020, 10, 2121.	3.3	3
155	Designing for Inconsistency – The Dependency-Based PERICLES Approach. Communications in Computer and Information Science, 2015, , 458-467.	O.5	3
156	Distributed User Modeling for Personalized News Delivery in Mobile Devices. , 2007, , .		2
157	Haemophilia B Curative FIX Production from a Low Dose UCOE-based Lentiviral Vector Following Hepatic Pre-natal Delivery. Current Gene Therapy, 2016, 16, 231-241.	2.0	2
158	An ontology supporting planning, analysis, and simulation of evolving digital ecosystems. , 2016, , .		2
159	Dependency modelling for inconsistency management in Digital Preservation – The PERICLES approach. Information Systems Frontiers, 2018, 20, 7-19.	6.4	2
160	Fetal gene therapy for neurodegenerative lysosomal storage diseases. Journal of Inherited Metabolic Disease, 2019, 42, 391-393.	3.6	2
161	Re-structuring lentiviral vectors to express genomic RNA via cap-dependent translation. Molecular Therapy - Methods and Clinical Development, 2021, 20, 357-365.	4.1	2
162	HIV- 1 lentivirus tethering to the genome is associated with transcription factor binding sites found in genes that favour virus survival. Gene Therapy, 2022, 29, 720-729.	4.5	2

#	Article	IF	CITATIONS
163	376. Hepatic Tropism of Adenoviral Type 5 Vectors Can Be Mediated by Multiple Coagulation Factors. Molecular Therapy, 2006, 13, S143.	8.2	1
164	The novel Jagged1/CD46 interaction: A prime target for immune modulation by viruses?. Immunobiology, 2012, 217, 1210-1211.	1.9	1
165	Choice of Surrogate and Physiological Markers for Prenatal Gene Therapy. , 2012, 891, 273-290.		1
166	529. Novel LTR-1 Lentiviral Vectors Are Fully Functional Following the Removal of HIV-1 Gag-RRE Sequences. Molecular Therapy, 2015, 23, S212.	8.2	1
167	On the Preservation of Evolving Digital Content – The Continuum Approach and Relevant Metadata Models. Communications in Computer and Information Science, 2015, , 15-26.	0.5	1
168	Assessing the Potential of Perinatal Gene Transfer Using Congenital Factor VII Deficiency as a Model System. Blood, 2010, 116, 247-247.	1.4	1
169	Continual Conscious Bioluminescent Imaging in Freely Moving Mice. Methods in Molecular Biology, 2020, 2081, 161-175.	0.9	1
170	Non-invasive somatotransgenic bioimaging in living animals. F1000Research, 0, 9, 1216.	1.6	1
171	Targeting the fetal respiratory muscles for prenatal gene therapy for duchenne muscular dystrophy. American Journal of Obstetrics and Gynecology, 2004, 191, S22.	1.3	0
172	827. Oncogenesis Following Delivery of Lentiviral Vectors to Fetal and Neonatal Mice. Molecular Therapy, 2006, 13, S320.	8.2	0
173	458. Development of Non-Integrating and Site- Specifically Integrating Lentiviral Vectors. Molecular Therapy, 2006, 13, S177.	8.2	0
174	Erratum to "Influence of Coagulation Factor X on In Vitro and In Vivo Gene Delivery by Adenovirus (Ad) 5, Ad35, and Chimeric Ad5/Ad35 Vectors― Molecular Therapy, 2009, 17, 1830.	8.2	0
175	Identification of Jagged1 as a novel ligand for CD46: An interaction required for normal induction and regulation of human TH1 responses. Immunobiology, 2012, 217, 1176.	1.9	0
176	Monitoring for Potential Adverse Effects of Prenatal Gene Therapy: Mouse Models for Developmental Aberrations and Inadvertent Germ Line Transmission. , 2012, 891, 329-340.		0
177	134. Generation of Light-Emitting Somatic-Transgenic Mice for Disease Modelling of Hypoxic Ischaemic Encephalopathy. Molecular Therapy, 2015, 23, S55.	8.2	0
178	181. Real-Time Monitoring of Transcription Factor Activity Using In Vitro and In Vivo Models of Cholestasis. Molecular Therapy, 2015, 23, S72.	8.2	0
179	380. Use of Somatotransgenic Bioimaging as a Platform for Studying NFkB Pathway in a Tissue-Specific Manner in Two Mouse Models of Inflammation: Rheumatoid Arthritis and Contact Dermatitis. Molecular Therapy, 2015, 23, S151.	8.2	0
180	256. A Novel Rationally Designed AAV Capsid Yields a Potent Neurotropic Gene Therapy Vector. Molecular Therapy, 2016, 24, S101.	8.2	0

#	Article	IF	CITATIONS
181	609. Transduction of the Central Nervous System with the LTR1 Lentiviral Backbone. Molecular Therapy, 2016, 24, S241.	8.2	0
182	305. Generation of Light-Producing, Somatic-Transgenic Mice Using Lentivirus and Adeno-Associated Virus Vectors. Molecular Therapy, 2016, 24, S123.	8.2	0
183	437. A Light-Producing Model of Infection-Related Preterm Birth. Molecular Therapy, 2016, 24, S173.	8.2	0
184	Luciferin detection after intra-nasal vector delivery is improved by intra-nasal rather than intra-peritoneal luciferin administration Human Gene Therapy, 2008, .	2.7	0