
Tse-Hua Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9560246/publications.pdf Version: 2024-02-01

Τςε-Ηιίλ Τλνι

#	Article	IF	CITATIONS
1	The Role of c-Jun N-terminal Kinase (JNK) in Apoptosis Induced by Ultraviolet C and Î ³ Radiation. Journal of Biological Chemistry, 1996, 271, 31929-31936.	1.6	792
2	Persistent Activation of c-Jun N-terminal Kinase 1 (JNK1) in Î ³ Radiation-induced Apoptosis. Journal of Biological Chemistry, 1996, 271, 631-634.	1.6	428
3	Cellular transcription factors and regulation of IL-2 receptor gene expression by HTLV-I tax gene product. Science, 1988, 241, 89-92.	6.0	370
4	Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene, 1998, 17, 173-178.	2.6	366
5	Activation of Mitogen-activated Protein Kinase Pathways Induces Antioxidant Response Element-mediated Gene Expression via a Nrf2-dependent Mechanism. Journal of Biological Chemistry, 2000, 275, 39907-39913.	1.6	310
6	Molecular Mechanisms of c-Jun N-terminal Kinase-mediated Apoptosis Induced by Anticarcinogenic Isothiocyanates. Journal of Biological Chemistry, 1998, 273, 1769-1775.	1.6	216
7	DUSPs, to MAP kinases and beyond. Cell and Bioscience, 2012, 2, 24.	2.1	211
8	Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade Genes and Development, 1996, 10, 2251-2264.	2.7	207
9	Tumorigenesis Suppressor Pdcd4 Down-Regulates Mitogen-Activated Protein Kinase Kinase Kinase Kinase 1 Expression To Suppress Colon Carcinoma Cell Invasion. Molecular and Cellular Biology, 2006, 26, 1297-1306.	1.1	198
10	The interleukin 2 CD28-responsive complex contains at least three members of the NF kappa B family: c-Rel, p50, and p65 Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1696-1700.	3.3	197
11	Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes and Development, 2005, 19, 827-839.	2.7	193
12	Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen-p53 protein complex. Journal of Virology, 1986, 59, 574-583.	1.5	183
13	p38 Mitogen-activated Protein Kinase Negatively Regulates the Induction of Phase II Drug-metabolizing Enzymes That Detoxify Carcinogens. Journal of Biological Chemistry, 2000, 275, 2322-2327.	1.6	178
14	Activation of the Hematopoietic Progenitor Kinase-1 (HPK1)-dependent, Stress-activated c-Jun N-terminal Kinase (JNK) Pathway by Transforming Growth Factor β (TGF-β)-activated Kinase (TAK1), a Kinase Mediator of TGF β Signal Transduction. Journal of Biological Chemistry, 1997, 272, 22771-22775.	1.6	175
15	Interaction between c-Rel and the Mitogen-activated Protein Kinase Kinase Kinase 1 Signaling Cascade in Mediating B Enhancer Activation. Journal of Biological Chemistry, 1996, 271, 8971-8976.	1.6	158
16	Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell–mediated immune responses. Nature Immunology, 2007, 8, 84-91.	7.0	156
17	A Novel Human STE20-related Protein Kinase, HGK, That Specifically Activates the c-Jun N-terminal Kinase Signaling Pathway. Journal of Biological Chemistry, 1999, 274, 2118-2125.	1.6	149
18	Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression. Carcinogenesis, 1997, 18, 451-456.	1.3	146

#	Article	IF	CITATIONS
19	Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene, 1999, 18, 377-384.	2.6	143
20	Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9687-9692.	3.3	142
21	The c-rel protooncogene product c-Rel but not NF-kappa B binds to the intronic region of the human interferon-gamma gene at a site related to an interferon-stimulable response element Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1740-1744.	3.3	141
22	Molecular Cloning and Characterization of a Novel Protein Kinase with a Catalytic Domain Homologous to Mitogen-activated Protein Kinase Kinase Kinase. Journal of Biological Chemistry, 1996, 271, 31607-31611.	1.6	136
23	MAP4K Family Kinases in Immunity and Inflammation. Advances in Immunology, 2016, 129, 277-314.	1.1	131
24	The kinase GLK controls autoimmunity and NF-κB signaling by activating the kinase PKC-Î, in T cells. Nature Immunology, 2011, 12, 1113-1118.	7.0	122
25	Mitogen-Activated Protein Kinases in Cell-Cycle Control. Cell Biochemistry and Biophysics, 2005, 43, 451-462.	0.9	113
26	Adriamycin activates c-jun N-terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Letters, 1996, 107, 73-81.	3.2	108
27	Regulation of Dual-Specificity Phosphatase (DUSP) Ubiquitination and Protein Stability. International Journal of Molecular Sciences, 2019, 20, 2668.	1.8	104
28	Butylated Hydroxyanisole and Its Metabolitetert-Butylhydroquinone Differentially Regulate Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 1997, 272, 28962-28970.	1.6	101
29	Activation of p38 and c-Jun N-terminal Kinase Pathways and Induction of Apoptosis by Chelerythrine Do Not Require Inhibition of Protein Kinase C. Journal of Biological Chemistry, 2000, 275, 9612-9619.	1.6	101
30	The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck. Nature Communications, 2014, 5, 3618.	5.8	100
31	Caspase-9-induced Mitochondrial Disruption through Cleavage of Anti-apoptotic BCL-2 Family Members. Journal of Biological Chemistry, 2007, 282, 33888-33895.	1.6	92
32	Expression of MAP4K4 Is Associated with Worse Prognosis in Patients with Stage II Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2008, 14, 7043-7049.	3.2	91
33	Activation of Stress-activated Protein Kinases/c-Jun N-terminal Protein Kinases (SAPKs/JNKs) by a Novel Mitogen-activated Protein Kinase Kinase (MKK7). Journal of Biological Chemistry, 1997, 272, 32378-32383.	1.6	90
34	Murine p38-δ Mitogen-activated Protein Kinase, a Developmentally Regulated Protein Kinase That Is Activated by Stress and Proinflammatory Cytokines. Journal of Biological Chemistry, 1999, 274, 7095-7102.	1.6	88
35	The Dual Specificity JKAP Specifically Activates the c-Jun N-terminal Kinase Pathway. Journal of Biological Chemistry, 2002, 277, 36592-36601.	1.6	86
36	Interaction of Hematopoietic Progenitor Kinase 1 with Adapter Proteins Crk and CrkL Leads to Synergistic Activation of c-Jun N-Terminal Kinase. Molecular and Cellular Biology, 1999, 19, 1359-1368.	1.1	81

#	Article	IF	CITATIONS
37	Phenylethyl Isothiocyanate Induces Apoptotic Signaling via Suppressing Phosphatase Activity against c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2002, 277, 39334-39342.	1.6	81
38	c-Jun N-Terminal Kinase Mediates Apoptotic Signaling Induced by <i>N</i> -(4-Hydroxyphenyl)retinamide. Molecular Pharmacology, 1999, 56, 1271-1279.	1.0	79
39	Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene, 2001, 20, 367-374.	2.6	79
40	Hematopoietic Progenitor Kinase 1 Is a Component of Transforming Growth Factor β-induced c-Jun N-terminal Kinase Signaling Cascade. Journal of Biological Chemistry, 1999, 274, 13133-13138.	1.6	76
41	HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nature Communications, 2014, 5, 4602.	5.8	76
42	A Novel Src Homology 3 Domain-containing Adaptor Protein, HIP-55, That Interacts with Hematopoietic Progenitor Kinase 1. Journal of Biological Chemistry, 1999, 274, 33945-33950.	1.6	72
43	The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins. Oncogene, 1998, 17, 1893-1901.	2.6	69
44	Caspase-mediated cleavage and functional changes of hematopoietic progenitor kinase 1 (HPK1). Oncogene, 1999, 18, 7370-7377.	2.6	67
45	Protein Phosphatase 4 Is Involved in Tumor Necrosis Factor-α-induced Activation of c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2002, 277, 6391-6398.	1.6	67
46	MAP4K4 Inhibition Promotes Survival of Human Stem Cell-Derived Cardiomyocytes and Reduces Infarct Size InÂVivo. Cell Stem Cell, 2019, 24, 579-591.e12.	5.2	66
47	MAPKKK6, a Novel Mitogen-Activated Protein Kinase Kinase Kinase, That Associates with MAPKKK5. Biochemical and Biophysical Research Communications, 1998, 253, 33-37.	1.0	65
48	Involvement of Hematopoietic Progenitor Kinase 1 in T Cell Receptor Signaling. Journal of Biological Chemistry, 2001, 276, 18908-18914.	1.6	65
49	Protein Phosphatase X Interacts with c-Rel and Stimulates c-Rel/Nuclear Factor κB Activity. Journal of Biological Chemistry, 1998, 273, 33561-33565.	1.6	64
50	Overexpression of atypical PKC in PC12 cells enhances NGF-responsiveness and survival through an NF-κB dependent pathway. Cell Death and Differentiation, 1999, 6, 753-764.	5.0	60
51	Utilization of signal transduction pathway by the human T-cell leukemia virus type I transcriptional activator tax. Journal of Virology, 1989, 63, 3761-3768.	1.5	60
52	Hematopoietic progenitor kinase-1 (HPK1) stress response signaling pathway activates lκB kinases (IKK-α/β) and IKK-β is a developmentally regulated protein kinase. Oncogene, 1999, 18, 5514-5524.	2.6	58
53	Regulation of PKC-Î, function by phosphorylation in T cell receptor signaling. Frontiers in Immunology, 2012, 3, 197.	2.2	58
54	MAP4K Family Kinases and DUSP Family Phosphatases in T-Cell Signaling and Systemic Lupus Erythematosus. Cells, 2019, 8, 1433.	1.8	57

Tse-Hua Tan

#	Article	IF	CITATIONS
55	HIP-55 Is Important for T-Cell Proliferation, Cytokine Production, and Immune Responses. Molecular and Cellular Biology, 2005, 25, 6869-6878.	1.1	56
56	Dual-Specificity Phosphatase 14 (DUSP14/MKP6) Negatively Regulates TCR Signaling by Inhibiting TAB1 Activation. Journal of Immunology, 2014, 192, 1547-1557.	0.4	53
57	The SH3 Domain-containing Adaptor HIP-55 Mediates c-Jun N-terminal Kinase Activation in T Cell Receptor Signaling. Journal of Biological Chemistry, 2003, 278, 52195-52202.	1.6	51
58	Conditional Knockout Mice Reveal an Essential Role of Protein Phosphatase 4 in Thymocyte Development and Pre-T-Cell Receptor Signaling. Molecular and Cellular Biology, 2007, 27, 79-91.	1.1	51
59	Actin-Binding Protein 1 Regulates B Cell Receptor-Mediated Antigen Processing and Presentation in Response to B Cell Receptor Activation. Journal of Immunology, 2008, 180, 6685-6695.	0.4	51
60	DUSP4 deficiency enhances CD25 expression and CD4 ⁺ Tâ€cell proliferation without impeding Tâ€cell development. European Journal of Immunology, 2012, 42, 476-488.	1.6	51
61	Leukocyte-specific adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes. Oncogene, 2001, 20, 1703-1714.	2.6	50
62	Functional interactions of HPK1 with adaptor proteins. Journal of Cellular Biochemistry, 2005, 95, 34-44.	1.2	48
63	Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. Nature Microbiology, 2017, 2, 16220.	5.9	47
64	Downregulation of the phosphatase JKAP/DUSP22 in T cells as a potential new biomarker of systemic lupus erythematosus nephritis. Oncotarget, 2016, 7, 57593-57605.	0.8	47
65	Oncogene activation of HIV-LTR-driven expression via the NF-ϰB binding sites. Nucleic Acids Research, 1993, 21, 5229-5234.	6.5	44
66	Attenuation of T Cell Receptor Signaling by Serine Phosphorylation-mediated Lysine 30 Ubiquitination of SLP-76 Protein. Journal of Biological Chemistry, 2012, 287, 34091-34100.	1.6	41
67	RBM4-SRSF3-MAP4K4 splicing cascade modulates the metastatic signature of colorectal cancer cell. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 259-272.	1.9	41
68	Protein Phosphatase 4 Is a Positive Regulator of Hematopoietic Progenitor Kinase 1. Journal of Biological Chemistry, 2004, 279, 49551-49561.	1.6	40
69	JNK Pathway-associated Phosphatase Dephosphorylates Focal Adhesion Kinase and Suppresses Cell Migration. Journal of Biological Chemistry, 2010, 285, 5472-5478.	1.6	40
70	Down-regulation of B Cell Receptor Signaling by Hematopoietic Progenitor Kinase 1 (HPK1)-mediated Phosphorylation and Ubiquitination of Activated B Cell Linker Protein (BLNK). Journal of Biological Chemistry, 2012, 287, 11037-11048.	1.6	39
71	Protein Phosphatase 4 Interacts with and Down-regulates Insulin Receptor Substrate 4 following Tumor Necrosis Factor-1± Stimulation. Journal of Biological Chemistry, 2004, 279, 46588-46594.	1.6	38
72	GLK-IKKÎ ² signaling induces dimerization and translocation of the AhR-RORÎ ³ t complex in IL-17A induction and autoimmune disease. Science Advances, 2018, 4, eaat5401.	4.7	38

#	Article	IF	CITATIONS
73	Caspase-Mediated Cleavage of Actin-Binding and SH3-Domain-Containing Proteins Cortactin, HS1, and HIP-55 during Apoptosis. Biochemical and Biophysical Research Communications, 2001, 288, 981-989.	1.0	37
74	The CUL7/F-box and WD Repeat Domain Containing 8 (CUL7/Fbxw8) Ubiquitin Ligase Promotes Degradation of Hematopoietic Progenitor Kinase 1. Journal of Biological Chemistry, 2014, 289, 4009-4017.	1.6	37
75	MAP4K3/GLK Promotes Lung Cancer Metastasis by Phosphorylating and Activating IQGAP1. Cancer Research, 2019, 79, 4978-4993.	0.4	36
76	Biochemical and biological characterization of a neuroendocrine-associated phosphatase. Journal of Neurochemistry, 2006, 98, 89-101.	2.1	35
77	Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Reports, 2021, 37, 110016.	2.9	35
78	Cell Cycle Regulation of c-Jun N-Terminal Kinase Activity at the Centrosomes. Biochemical and Biophysical Research Communications, 2001, 289, 173-180.	1.0	34
79	TRAF2-mediated Lys63-linked ubiquitination of DUSP14/MKP6 is essential for its phosphatase activity. Cellular Signalling, 2016, 28, 145-151.	1.7	33
80	Proteomic analysis of resting and thrombinâ€stimulated platelets reveals the translocation and functional relevance of HIPâ€55 in platelets. Proteomics, 2009, 9, 4340-4354.	1.3	32
81	DUSP6 mediates T cell receptor-engaged glycolysis and restrains T _{FH} cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8027-E8036.	3.3	32
82	Activation of signal transduction kinases by tamoxifen. Pharmaceutical Research, 1997, 14, 186-189.	1.7	31
83	Germinal center kinase-like kinase (GLK/MAP4K3) expression is increased in adult-onset Still's disease and may act as an activity marker. BMC Medicine, 2012, 10, 84.	2.3	31
84	Actin-binding protein 1 links B-cell antigen receptors to negative signaling pathways. Proceedings of the United States of America, 2014, 111, 9881-9886.	3.3	31
85	MAP4K3/GLK in autoimmune disease, cancer and aging. Journal of Biomedical Science, 2019, 26, 82.	2.6	29
86	Proteasome-Mediated Degradation and Functions of Hematopoietic Progenitor Kinase 1 in Pancreatic Cancer. Cancer Research, 2009, 69, 1063-1070.	0.4	28
87	Inhibition of JNK2 Disrupts Anaphase and Produces Aneuploidy in Mammalian Cells. Journal of Biological Chemistry, 2004, 279, 40112-40121.	1.6	26
88	TBK1-associated Protein in Endolysosomes (TAPE)/CC2D1A Is a Key Regulator Linking RIG-I-like Receptors to Antiviral Immunity. Journal of Biological Chemistry, 2012, 287, 32216-32221.	1.6	25
89	GLK/MAP4K3 overexpression associates with recurrence risk for non-small cell lung cancer. Oncotarget, 0, 7, 41748-41757.	0.8	24
90	Deficiency in VHR/DUSP3, a suppressor of focal adhesion kinase, reveals its role in regulating cell adhesion and migration. Oncogene, 2017, 36, 6509-6517.	2.6	21

#	Article	IF	CITATIONS
91	AhR–RORâ€Î³t complex is a therapeutic target for MAP4K3/GLK high ILâ€17A high subpopulation of systemic lupus erythematosus. FASEB Journal, 2019, 33, 11469-11480.	0.2	20
92	Germinal Center Kinase–like Kinase Overexpression in T Cells as a Novel Biomarker in Rheumatoid Arthritis. Arthritis and Rheumatism, 2013, 65, 2573-2582.	6.7	19
93	Induction of DUSP14 ubiquitination by PRMT5â€mediated arginine methylation. FASEB Journal, 2018, 32, 6760-6770.	0.2	18
94	Epigenetic regulation of HGK/MAP4K4 in T cells of type 2 diabetes patients. Oncotarget, 2016, 7, 10976-10989.	0.8	18
95	Cutting Edge: Î ³ δT Cells Provide Help to B Cells with Altered Clonotypes and Are Capable of Inducing Ig Gene Hypermutation. Journal of Immunology, 2003, 171, 4979-4983.	0.4	17
96	Genomic structure of the mouse PP4 gene: a developmentally regulated protein phosphatase. Gene, 2001, 278, 89-99.	1.0	16
97	Interaction of Hematopoietic Progenitor Kinase 1 and c-Abl Tyrosine Kinase in Response to Genotoxic Stress. Journal of Biological Chemistry, 2001, 276, 18130-18138.	1.6	16
98	BPI overexpression suppresses Treg differentiation and induces exosome-mediated inflammation in systemic lupus erythematosus. Theranostics, 2021, 11, 9953-9966.	4.6	15
99	Induction of Interferonâ€Î³ and Tissue Inflammation by Overexpression of Eosinophil Cationic Protein in T Cells and Exosomes. Arthritis and Rheumatology, 2022, 74, 92-104.	2.9	14
100	Protein phosphatase 4 is an essential positive regulator for Treg development, function, and protective gut immunity. Cell and Bioscience, 2014, 4, 25.	2.1	13
101	DUSP22 suppresses prostate cancer proliferation by targeting the EGFRâ€AR axis. FASEB Journal, 2019, 33, 14653-14667.	0.2	13
102	Role of c-Jun N-terminal kinase 1 (JNK1) in cell cycle checkpoint activated by the protease inhibitor N-acetyl-leucinyl-leucinyl-norleucinal. Oncogene, 1999, 18, 6974-6980.	2.6	12
103	MAP4K4 and IL-6+ Th17 cells play important roles in non-obese type 2 diabetes. Journal of Biomedical Science, 2017, 24, 4.	2.6	12
104	RBM4a-SRSF3-MAP4K4 Splicing Cascade Constitutes a Molecular Mechanism for Regulating Brown Adipogenesis. International Journal of Molecular Sciences, 2018, 19, 2646.	1.8	12
105	The Serine/Threonine Phosphatase PP4 Is Required for Pro-B Cell Development through Its Promotion of Immunoglobulin VDJ Recombination. PLoS ONE, 2013, 8, e68804.	1.1	11
106	Expression and characterization of the trans-activating protein Tax of human T-cell leukemia virus type I in Saccharomyces cerevisiae. Journal of Virology, 1992, 66, 7253-7261.	1.5	11
107	Lack of Correlation in JNK Activation and p53-Dependent Fas Expression Induced by Apoptotic Stimuli. Biochemical and Biophysical Research Communications, 1999, 256, 595-599.	1.0	10
108	PP4 Is Essential for Germinal Center Formation and Class Switch Recombination in Mice. PLoS ONE, 2014, 9, e107505.	1.1	10

#	Article	IF	CITATIONS
109	Prediction of early hepatocellular carcinoma recurrence using germinal center kinase-like kinase. Oncotarget, 2016, 7, 49765-49776.	0.8	9
110	p38 MAP Kinase Interacts with and Stabilizes Pancreatic and Duodenal Homeobox-1. Current Molecular Medicine, 2013, 13, 377-386.	0.6	9
111	PP4 deficiency leads to DNA replication stress that impairs immunoglobulin class switch efficiency. Cell Death and Differentiation, 2019, 26, 1221-1234.	5.0	8
112	DUSP11 Attenuates Lipopolysaccharide-Induced Macrophage Activation by Targeting TAK1. Journal of Immunology, 2020, 205, 1644-1652.	0.4	8
113	A nonradioactive screening method for cloning genes encoding sequence-specific DNA binding proteins. Analytical Biochemistry, 1991, 192, 17-22.	1.1	6
114	Germline transmission and efficient DNA recombination in mouse embryonic stem cells mediated by adenoviral-Cre transduction. Genesis, 2004, 39, 217-223.	0.8	6
115	Genomic sequencing and functional analyses identify MAP4K3/GLK germline and somatic variants associated with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2022, 81, 243-254.	0.5	5
116	Structural Insights into the Active Site Formation of DUSP22 in N-loop-containing Protein Tyrosine Phosphatases. International Journal of Molecular Sciences, 2020, 21, 7515.	1.8	4
117	Long-Term Inositol Phosphate Release, but Not Tyrosine Kinase Activity, Correlates with IL-2 Secretion and NF-AT Induction in Anti-CD3-Activated Peripheral Human T Lymphocytes. Cellular Immunology, 1994, 157, 158-169.	1.4	3
118	Mechanisms of Enhanced Nuclear Translocation of the Transcription Factors c-Rel and NF-kB by CD28 Costimulation in Human T Lymphocytes. Annals of the New York Academy of Sciences, 1995, 766, 220-223.	1.8	3
119	DUSP3 regulates phosphorylation-mediated degradation of occludin and is required for maintaining epithelial tight junction. Journal of Biomedical Science, 2022, 29, .	2.6	3
120	The HTLV-I Tax-Inducible Enhancer Is Responsive to Various Inducing Agents. Annals of the New York Academy of Sciences, 1989, 567, 291-294.	1.8	1
121	Abstract 1949: The Protein Kinase MAP4K4 Is Activated in Failing Human Hearts and Mediates Cardiomyocyte Apoptosis in Experimental Models, in vitro and in vivo. Circulation, 2007, 116, .	1.6	1
122	Single-cell RNA sequencing uncovers the individual alteration of intestinal mucosal immunocytes in Dusp6 knockout mice. IScience, 2022, 25, 103738.	1.9	1
123	Identification and Purification of Multiple HTLV-I Tax-Inducible Enhancer Binding Proteins. Annals of the New York Academy of Sciences, 1989, 567, 288-290.	1.8	0
124	Murine p38-δ mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines Journal of Biological Chemistry, 1999, 274, 20744.	1.6	0
125	MAP4K3 (GLK). , 2016, , 1-5.		0
126	MAP4K3 (GLK). , 2018, , 2947-2951.		0