
Corinna S Schindler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9559986/publications.pdf Version: 2024-02-01

CODININA S SCHINDLED

#	Article	IF	CITATIONS
1	The synthesis of herqulines B and C. Strategies and Tactics in Organic Synthesis, 2022, 15, 247-280.	0.1	0
2	Reactivity of oximes for diverse methodologies and synthetic applications. , 2022, 1, 24-36.		66
3	Hydrazone and Oxime Olefination via Ruthenium Alkylidenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
4	Intramolecular, Visible-Light-Mediated Aza Paternò-Büchi Reactions of Unactivated Alkenes. Organic Letters, 2022, 24, 3053-3057.	4.6	19
5	Total Synthesis of (+)â€Cochlearolâ€B by an Approach Based on a Catellani Reaction and Visibleâ€Lightâ€Enabled [2+2] Cycloaddition**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
6	Total Synthesis of (+)â€Cochlearolâ€B by an Approach Based on a Catellani Reaction and Visibleâ€Lightâ€Enabled [2+2] Cycloaddition**. Angewandte Chemie, 2022, 134, .	2.0	4
7	Total Synthesis of Mycocyclosin and the Herqulines. Synthesis, 2021, 53, 4178-4186.	2.3	4
8	Design of a Two-Week Organic Chemistry Course for High School Students: "Catalysis, Solar Energy, and Green Chemical Synthesis― Journal of Chemical Education, 2021, 98, 2449-2456.	2.3	6
9	Carbonyl–Olefin Metathesis. Chemical Reviews, 2021, 121, 9359-9406.	47.7	70
10	Converting a Two-Week Chemistry Course for High School Students to a Virtual Format During COVID. Journal of Chemical Education, 2021, 98, 2457-2464.	2.3	3
11	1- and 2-Azetines via Visible Light-Mediated [2 + 2]-Cycloadditions of Alkynes and Oximes. Journal of the American Chemical Society, 2021, 143, 16235-16242.	13.7	30
12	Origin of enantioselectivity reversal in Lewis acid-catalysed Michael additions relying on the same chiral source. Chemical Science, 2021, 12, 14133-14142.	7.4	6
13	Eight-Step Enantiodivergent Synthesis of (+)- and (â^')-Lingzhiol. Organic Letters, 2020, 22, 290-294.	4.6	21
14	Interrupted Carbonylâ€Alkyne Metathesis. Advanced Synthesis and Catalysis, 2020, 362, 365-369.	4.3	12
15	New reactivity in organic chemistry: a themed collection. Chemical Science, 2020, 11, 12385-12385.	7.4	0
16	Visible-Light-Enabled Paternò–Büchi Reaction via Triplet Energy Transfer for the Synthesis of Oxetanes. Organic Letters, 2020, 22, 6516-6519.	4.6	59
17	Superelectrophilic aluminium(iii)–ion pairs promote a distinct reaction path for carbonyl–olefin ring-closing metathesis. Nature Catalysis, 2020, 3, 787-796.	34.4	24
18	Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions. Nature Chemistry, 2020, 12, 898-905.	13.6	120

CORINNA S SCHINDLER

#	Article	IF	CITATIONS
19	Gibberellin JRA-003: A Selective Inhibitor of Nuclear Translocation of IKKα. ACS Medicinal Chemistry Letters, 2020, 11, 1913-1918.	2.8	4
20	Synthesis of azetidines by aza Paternò–Büchi reactions. Chemical Science, 2020, 11, 7553-7561.	7.4	73
21	High-Throughput Approach toward the Development of a Mizoroki–Heck Reaction To Access Tricyclic Spirolactones. Journal of Organic Chemistry, 2020, 85, 9071-9079.	3.2	3
22	Models for Understanding Divergent Reactivity in Lewis Acid-Catalyzed Transformations of Carbonyls and Olefins. ACS Catalysis, 2020, 10, 4387-4397.	11.2	20
23	Tetrahydropyridines via FeCl ₃ -Catalyzed Carbonyl–Olefin Metathesis. Organic Letters, 2020, 22, 2844-2848.	4.6	14
24	Superelectrophilic Fe(III)–Ion Pairs as Stronger Lewis Acid Catalysts for (<i>E</i>)-Selective Intermolecular Carbonyl–Olefin Metathesis. Organic Letters, 2020, 22, 3155-3160.	4.6	21
25	Functionalized azetidines via visible light-enabled aza Paternò-Büchi reactions. Nature Communications, 2019, 10, 5095.	12.8	80
26	Catalytic, transannular carbonyl-olefin metathesis reactions. Chemical Science, 2019, 10, 10267-10274.	7.4	33
27	Lewis Acid-Catalyzed Carbonyl–Olefin Metathesis. Trends in Chemistry, 2019, 1, 272-273.	8.5	11
28	Recent Advances in the Application of Ring-Closing Metathesis for the Synthesis of Unsaturated Nitrogen Heterocycles. Synthesis, 2019, 51, 1100-1114.	2.3	43
29	Total Syntheses of Herqulines B and C. Journal of the American Chemical Society, 2019, 141, 3409-3413.	13.7	25
30	Catalytic Carbonyl-Olefin Metathesis of Aliphatic Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles. Journal of the American Chemical Society, 2019, 141, 1690-1700.	13.7	63
31	Functionalized cyclopentanes via Sc(III)-catalyzed intramolecular enolate alkylation. Tetrahedron, 2018, 74, 3306-3313.	1.9	8
32	Lewis-Base-Catalyzed Reductive Aldol Reaction To Access Quaternary Carbons. Organic Letters, 2018, 20, 2580-2584.	4.6	12
33	3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. ACS Catalysis, 2018, 8, 2006-2011.	11.2	51
34	lron-Catalyzed Synthesis of Tetrahydronaphthalenes via 3,4-Dihydro-2 <i>H</i> -pyran Intermediates. Organic Letters, 2018, 20, 68-71.	4.6	8
35	Scalable Synthesis of Mycocyclosin. Organic Letters, 2018, 20, 2862-2866.	4.6	24
36	Beyond olefins: new metathesis directions for synthesis. Chemical Society Reviews, 2018, 47, 7867-7881.	38.1	84

CORINNA S SCHINDLER

#	Article	IF	CITATIONS
37	Interrupted carbonyl-olefin metathesis via oxygen atom transfer. Science, 2018, 361, 1363-1369.	12.6	47
38	GaCl ₃ -Catalyzed Ring-Opening Carbonyl–Olefin Metathesis. Organic Letters, 2018, 20, 4954-4958.	4.6	48
39	Carbonyl-Olefin Metathesis for the Synthesis of Cyclic Olefins. Organic Syntheses, 2018, 95, 472-485.	1.0	4
40	Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl–Olefin Metathesis. Journal of the American Chemical Society, 2017, 139, 2960-2963.	13.7	112
41	Lewis Acid Catalyzed Carbonyl–Olefin Metathesis. Synlett, 2017, 28, 1501-1509.	1.8	48
42	Catalyst: Sustainable Catalysis. CheM, 2017, 2, 313-316.	11.7	160
43	Aluminum Chloride-Mediated Dieckmann Cyclization for the Synthesis of Cyclic 2-Alkyl-1,3-alkanediones: One-Step Synthesis of the Chiloglottones. Organic Letters, 2017, 19, 3958-3961.	4.6	12
44	Acid Chlorides as Formal Carbon Dianion Linchpin Reagents in the Aluminum Chloride-Mediated Dieckmann Cyclization of Dicarboxylic Acids. Organic Letters, 2017, 19, 3962-3965.	4.6	4
45	Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. Journal of the American Chemical Society, 2017, 139, 10832-10842.	13.7	77
46	Iron(III) Chloride Catalyzed Formation of 3,4-Dihydro-2H-pyrans from α-Alkylated 1,3-Dicarbonyls. Selective Synthesis of α- and β-Lapachone. Organic Letters, 2016, 18, 1310-1313.	4.6	19
47	Iron(III)-catalysed carbonyl–olefin metathesis. Nature, 2016, 533, 374-379.	27.8	179
48	New avenues for the synthesis of ent-kaurene diterpenoids. Tetrahedron, 2015, 71, 6629-6650.	1.9	67
49	Discovery of Novel Synthetic Methodologies and Reagents during Natural Product Synthesis in the Post-Palytoxin Era. Chemical Reviews, 2015, 115, 9232-9276.	47.7	40
50	Synthesis and biological evaluation of pharbinilic acid and derivatives as NF-κB pathway inhibitors. Chemical Communications, 2015, 51, 8990-8993.	4.1	11
51	Hydrazone and Oxime Olefination via Ruthenium Alkylidenes. Angewandte Chemie, 0, , .	2.0	0