Jie Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9559444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 2018, 9, 4609.	12.8	596
2	A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy and Environmental Science, 2017, 10, 2509-2515.	30.8	437
3	Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372, 1327-1332.	12.6	351
4	Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700576.	19.5	240
5	Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	119
6	Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. Advanced Materials, 2017, 29, 1601715.	21.0	104
7	Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2018, 10, 14922-14929.	8.0	81
8	Large-area perovskite solar cells with Cs _x FA _{1â^`x} PbI _{3â^'y} Br _y thin films deposited by a vapor–solid reaction method. Journal of Materials Chemistry A, 2018, 6, 21143-21148.	10.3	73
9	Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer. Journal of Materials Chemistry C, 2018, 6, 5733-5737.	5.5	61
10	Stacking n-type layers: Effective route towards stable, efficient and hysteresis-free planar perovskite solar cells. Nano Energy, 2018, 44, 34-42.	16.0	56
11	Dynamic Antisolvent Engineering for Spin Coating of 10 × 10 cm ² Perovskite Solar N Approaching 18%. Solar Rrl, 2020, 4, 1900263.	Nodule	52
12	Surface modification <i>via</i> self-assembling large cations for improved performance and modulated hysteresis of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 6793-6800.	10.3	48
13	High performance perovskite sub-module with sputtered SnO2 electron transport layer. Solar Energy, 2019, 183, 306-314.	6.1	46
14	Efficient and Stable Inverted Planar Perovskite Solar Cells Using a Triphenylamine Holeâ€Transporting Material. ChemSusChem, 2018, 11, 1467-1473.	6.8	45
15	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy, 2020, 75, 104917.	16.0	44
16	Universal defects elimination for high performance thermally evaporated CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 206, 110317.	6.2	41
17	Carbon film electrode based square-centimeter scale planar perovskite solar cells exceeding 17% efficiency. Materials Science in Semiconductor Processing, 2020, 107, 104809.	4.0	39
18	Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. Journal of Materials Chemistry A, 2017, 5, 8352-8359.	10.3	35

Jie Zhong

#	Article	lF	CITATIONS
19	An efficient, flexible perovskite solar module exceeding 8% prepared with an ultrafast PbI2 deposition rate. Scientific Reports, 2018, 8, 442.	3.3	35
20	Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. Nano Energy, 2020, 71, 104567.	16.0	35
21	Enhanced Crystallinity of Lowâ€Temperature Solutionâ€Processed SnO ₂ for Highly Reproducible Planar Perovskite Solar Cells. ChemSusChem, 2018, 11, 2898-2903.	6.8	31
22	Batch chemical bath deposition of large-area SnO2 film with mercaptosuccinic acid decoration for homogenized and efficient perovskite solar cells. Chemical Engineering Journal, 2021, 425, 131444.	12.7	29
23	Organic/inorganic self-doping controlled crystallization and electronic properties of mixed perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 6319-6326.	10.3	28
24	Humidity controlled sol-gel Zr/TiO2 with optimized band alignment for efficient planar perovskite solar cells. Solar Energy, 2016, 139, 290-296.	6.1	27
25	Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass. Langmuir, 2018, 34, 11316-11324.	3.5	25
26	Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions. Solar Energy, 2019, 188, 312-317.	6.1	23
27	Formamidinium-Based Perovskite Solar Cells with Enhanced Moisture Stability and Performance via Confined Pressure Annealing. Journal of Physical Chemistry C, 2020, 124, 12249-12258.	3.1	23
28	Room-temperature synthesized SnO ₂ electron transport layers for efficient perovskite solar cells. RSC Advances, 2019, 9, 9946-9950.	3.6	21
29	Fabrication of Efficient and Stable Perovskite Solar Cells in Highâ€Humidity Environment through Traceâ€Doping of Largeâ€Sized Cations. ChemSusChem, 2019, 12, 2385-2392.	6.8	20
30	Alleviate the J–V hysteresis of carbon-based perovskite solar cells via introducing additional methylammonium chloride into MAPbI3 precursor. RSC Advances, 2018, 8, 35157-35161.	3.6	19
31	Interface passivation engineering for hybrid perovskite solar cells. Materials Reports Energy, 2021, 1, 100060.	3.2	19
32	Suppressed hysteresis and enhanced performance of triple cation perovskite solar cell with chlorine incorporation. Journal of Materials Chemistry C, 2018, 6, 13157-13161.	5.5	18
33	Differentiated Functions of Potassium Interface Passivation and Doping on Charge-Carrier Dynamics in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 3188-3196.	4.6	17
34	Rapid preparation of conductive transparent films via solution printing of graphene precursor. Thin Solid Films, 2018, 657, 24-31.	1.8	14
35	Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells. Frontiers of Optoelectronics, 2020, 13, 272-281.	3.7	14
36	Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of â^1/414%. ACS Applied Energy Materials, 2018, 1, 3565-3570.	5.1	13

JIE ZHONG

#	Article	IF	CITATIONS
37	Enhancing the thermal stability of the carbon-based perovskite solar cells by using a CsxFA1â^xPbBrxI3â^x light absorber. RSC Advances, 2019, 9, 11877-11881.	3.6	13
38	Interface modification effect on the performance of CsxFA1â^'xPbIyBr3â^'y perovskite solar cells fabricated by evaporation/spray-coating method. Journal of Chemical Physics, 2020, 153, 014706.	3.0	13
39	Enhancing the performance and stability of carbon-based perovskite solar cells by the cold isostatic pressing method. RSC Advances, 2017, 7, 48958-48961.	3.6	12
40	Meso/micro-porosity and phase separation in TiO2/SiO2/C nanocomposites. Microporous and Mesoporous Materials, 2012, 150, 25-31.	4.4	11
41	Improving the intrinsic thermal stability of the MAPbI ₃ perovskite by incorporating cesium 5-aminovaleric acetate. RSC Advances, 2018, 8, 14991-14994.	3.6	9
42	Sub-sized monovalent alkaline cations enhanced electrical stability for over 17% hysteresis-free planar perovskite solar mini-module. Electrochimica Acta, 2019, 306, 635-642.	5.2	9
43	Room-temperature Sputtered NiOx for hysteresis-free and stable inverted Cs-FA mixed-cation perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 115, 105129.	4.0	9
44	In-situ monitored chemical bath deposition of planar NiO layer for inverted perovskite solar cell with enhanced efficiency. Journal of Materials Science and Technology, 2023, 133, 145-153.	10.7	8
45	A novel dopant for spiro-OMeTAD towards efficient and stable perovskite solar cells. Science China Materials, 2021, 64, 2915-2925.	6.3	7
46	Bandgap adjustment assisted preparation of >18% Cs _y FA _{1â^'y} PbI _x Br _{3â^'x} -based perovskite solar cells using a hybrid spraying process. RSC Advances, 2021, 11, 17595-17602.	3.6	4
47	Highly Crystalline Graphene as the Atomic 2D Blanket of a Perovskite Absorber for Enhanced Photovoltaic Performance. ACS Applied Materials & Interfaces, 2022, 14, 24864-24874.	8.0	3
48	Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells (Adv. Energy Mater. 20/2022). Advanced Energy Materials, 2022, 12, .	19.5	0