Jan Zukal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9559436/publications.pdf

Version: 2024-02-01

		471509	414414
55	1,246 citations	17	32
papers	citations	h-index	g-index
58	58	58	993
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Habitat preference and flight activity of bats in a city. Journal of Zoology, 1998, 244, 439-445.	1.7	115
2	Bats as bioindicators of heavy metal pollution: history and prospect. Mammalian Biology, 2015, 80, 220-227.	1.5	104
3	White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Scientific Reports, 2016, 6, 19829.	3.3	98
4	NONLETHAL SCREENING OF BAT-WING SKIN WITH THE USE OF ULTRAVIOLET FLUORESCENCE TO DETECT LESIONS INDICATIVE OF WHITE-NOSE SYNDROME. Journal of Wildlife Diseases, 2014, 50, 566-573.	0.8	90
5	Increasing Incidence of Geomyces destructans Fungus in Bats from the Czech Republic and Slovakia. PLoS ONE, 2010, 5, e13853.	2.5	85
6	White-Nose Syndrome Fungus: A Generalist Pathogen of Hibernating Bats. PLoS ONE, 2014, 9, e97224.	2.5	79
7	Histopathology Confirms White-Nose Syndrome in Bats in Europe. Journal of Wildlife Diseases, 2012, 48, 207-211.	0.8	59
8	Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. Environmental Toxicology and Chemistry, 2010, 29, 501-506.	4.3	41
9	<i>Pseudogymnoascus destructans</i> : Evidence of Virulent Skin Invasion for Bats Under Natural Conditions, Europe. Transboundary and Emerging Diseases, 2015, 62, 1-5.	3.0	41
10	White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS ONE, 2017, 12, e0180435.	2.5	39
11	Alterations in the health of hibernating bats under pathogen pressure. Scientific Reports, 2018, 8, 6067.	3.3	29
12	Ectoparasites may serve as vectors for the white-nose syndrome fungus. Parasites and Vectors, 2016, 9, 16.	2.5	26
13	Transcriptional host–pathogen responses of <i>Pseudogymnoascus destructans</i> and three species of bats with white-nose syndrome. Virulence, 2020, 11, 781-794.	4.4	23
14	Establishment of Myotis myotis Cell Lines - Model for Investigation of Host-Pathogen Interaction in a Natural Host for Emerging Viruses. PLoS ONE, 2014, 9, e109795.	2.5	21
15	Deeply torpid bats can change position without elevation of body temperature. Journal of Thermal Biology, 2017, 63, 119-123.	2.5	21
16	Hibernation temperature-dependent <i>Pseudogymnoascus destructans</i> infection intensity in Palearctic bats. Virulence, 2018, 9, 1734-1750.	4.4	21
17	Cave visitation by temperate zone bats: effects of climatic factors. Journal of Zoology, 2010, 280, 387-395.	1.7	19
18	Flight activity of bats at the entrance of a natural cave. Acta Chiropterologica, 2006, 8, 187-195.	0.6	18

#	Article	IF	Citations
19	EMERGENCE BEHAVIOUR OF THE SEROTINE BAT (EPTESICUS SEROTINUS) UNDER PREDATION RISK. Animal Biology, 2001, 51, 395-414.	0.4	17
20	Activity and shelter selection by Myotis myotis and Rhinolophus hipposideros hibernating in the Kateřinská cave (Czech Republic). Mammalian Biology, 2005, 70, 271-281.	1.5	17
21	Reproduction of Rescued Vespertilionid Bats (Nyctalus noctula) in Captivity. Veterinary Clinics of North America - Exotic Animal Practice, 2017, 20, 665-677.	0.7	17
22	Natural selection in bats with historical exposure to white-nose syndrome. BMC Zoology, 2018, 3, .	1.0	17
23	Does a Live Barn Owl (Tyto alba) Affect Emergence Behavior of Serotine Bats (Eptesicus serotinus)?. Acta Chiropterologica, 2003, 5, 177.	0.6	16
24	Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats. Journal of Thermal Biology, 2019, 82, 150-156.	2.5	15
25	Historic and geographic surveillance of <i>Pseudogymnoascus destructans</i> possible from collections of bat parasites. Transboundary and Emerging Diseases, 2018, 65, 303-308.	3.0	14
26	White-nose syndrome detected in bats over an extensive area of Russia. BMC Veterinary Research, 2018, 14, 192.	1.9	14
27	Bats and Caves: Activity and Ecology of Bats Wintering in Caves. , 0, , .		13
28	A comparison between emergence and return activity in pipistrelle bats Pipistrellus pipistrellus and P. pygmaeus. Acta Chiropterologica, 2006, 8, 381-390.	0.6	11
29	Carp feeding activity and habitat utilisation in relation to supplementary feeding in a semi-intensive aquaculture pond. Aquaculture International, 2016, 24, 1627-1640.	2.2	11
30	Urinary shedding of leptospires in palearctic bats. Transboundary and Emerging Diseases, 2021, 68, 3089-3095.	3.0	10
31	Measurement of phagocyte activity in heterotherms. Acta Veterinaria Brno, 2020, 89, 79-87.	0.5	10
32	Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. Journal of Virology, 2022, 96, .	3.4	10
33	Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states. BMC Veterinary Research, 2020, 16, 232.	1.9	9
34	Nontuberculous Mycobacteria Prevalence in Bats' Guano from Caves and Attics of Buildings Studied by Culture and qPCR Examinations. Microorganisms, 2021, 9, 2236.	3.6	9
35	Ecomorphometry of <i>Myotis daubentonii</i> and <i>M. lucifugus</i> (Chiroptera, Vespertilionidae) – a Palearctic-Nearctic comparison. Mammalia, 2004, 68, 275-282.	0.7	8
36	Selection of buildings as maternity roosts by greater mouse-eared bats (Myotis myotis). Journal of Mammalogy, 2014, 95, 1011-1017.	1.3	8

#	Article	IF	Citations
37	Trypanosomes in Eastern and Central European bats. Acta Veterinaria Brno, 2020, 89, 69-78.	0.5	8
38	Environmental quality and natural food performance at feeding sites in a carp (Cyprinus carpio) pond. Aquaculture International, 2016, 24, 1591-1606.	2.2	7
39	Mitochondrial DNA Confirms Low Genetic Variation of the Greater Mouse-Eared Bats, <i>Myotis myotis </i> , in Central Europe. Acta Chiropterologica, 2010, 12, 73-81.	0.6	6
40	Polyacetylene p–n Junctions with Varying Dopant Density by Polyelectrolyte-Mediated Electrochemistry. Journal of Physical Chemistry C, 2013, 117, 1600-1610.	3.1	6
41	Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters. PLoS ONE, 2020, 15, e0234784.	2.5	6
42	Flying or sleeping: flight activity of bats in natural cave with confirmed WNS. Folia Zoologica, 2016, 65, 46-51.	0.9	5
43	Bats as another potential source of murine gammaherpesvirus 68 (MHV-68) in nature. Acta Virologica, 2018, 62, 337-339.	0.8	5
44	Comparison of diagnostic methods for <i>Tetracapsuloides bryosalmonae</i> detection in salmonid fish. Journal of Fish Diseases, 2021, 44, 1147-1153.	1.9	5
45	Winter activity of common bream (<i>Abramis brama</i> L.) in a European reservoir. Fisheries Management and Ecology, 2018, 25, 163-171.	2.0	4
46	Cold arousal - A mechanism used by hibernating bats to reduce the energetic costs of disturbance. Journal of Thermal Biology, 2021, 101, 103107.	2.5	4
47	Handbook of the Mammals of the World. Journal of Vertebrate Biology, 2020, 69, .	1.0	4
48	Diclofenac-induced cytotoxicity in cultured carp leukocytes. Physiological Research, 2020, 69, S607-S618.	0.9	4
49	Blood Parasites and Health Status of Hibernating and Non-Hibernating Noctule Bats (Nyctalus) Tj ETQq1 1 0.784	314 rgBT 3.6	/Oyerlock 10
50	Recovery of a phytopathogenic bacterium Lonsdalea quercina from a lesser horseshoe bat in Moravian karst, Czech Republic. Forest Pathology, 2018, 48, e12379.	1.1	3
51	Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats. BMC Veterinary Research, 2020, 16, 482.	1.9	3
52	Associating physiological functions with genomic variability in hibernating bats. Evolutionary Ecology, 2021, 35, 291-308.	1.2	3
53	Fresh semen characteristics in captive accipitrid and falconid birds of prey. Acta Veterinaria Brno, 2020, 89, 291-300.	0.5	1
54	Torpor/hibernation cycle may enhance the risk of insecticides for bats: an in vitro study. Acta Veterinaria Brno, 2022, 91, 59-68.	0.5	1

#	Article	lF	CITATIONS
55	One or two pups - optimal reproduction strategies of common noctule females. BMC Zoology, 2022, 7,	1.0	1