
Niko Heeren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9559419/publications.pdf Version: 2024-02-01

NIKO HEEDEN

#	Article	IF	CITATIONS
1	Data innovation in industrial ecology. Journal of Industrial Ecology, 2022, 26, 6-11.	2.8	2
2	Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus. Journal of Industrial Ecology, 2021, 25, 260-273.	2.8	31
3	Optimisation of energy-efficient greenhouses based on an integrated energy demand-yield production model. Biosystems Engineering, 2021, 202, 1-15.	1.9	8
4	Material efficiency and climate change mitigation of passenger vehicles. Journal of Industrial Ecology, 2021, 25, 494-510.	2.8	30
5	Investigations on the Sustainable Resource Use of Swiss Timber. Sustainability, 2021, 13, 1237.	1.6	9
6	A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling. Journal of Industrial Ecology, 2021, 25, 305-320.	2.8	33
7	Material efficiency for climate change mitigation. Journal of Industrial Ecology, 2021, 25, 254-259.	2.8	6
8	Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nature Communications, 2021, 12, 5097.	5.8	121
9	Material efficiency and its contribution to climate change mitigation in Germany: A deep decarbonization scenario analysis until 2060. Journal of Industrial Ecology, 2021, 25, 479-493.	2.8	31
10	Factors influencing the life-cycle GHG emissions of Brazilian office buildings. Buildings and Cities, 2021, 2, 856-873.	1.1	0
11	ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures. Journal of Industrial Ecology, 2020, 24, 446-458.	2.8	34
12	A framework for sustainable and circular system design: Development and application on thermal insulation materials. Resources, Conservation and Recycling, 2020, 154, 104631.	5.3	42
13	A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation. Applied Energy, 2020, 280, 115953.	5.1	33
14	Sustainability Assessment of the Housing System: Exploring the Interplay between the Material and Social Systems. , 2020, , 384-416.		1
15	Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 2020, 266, 114848.	5.1	427
16	A database seed for a community-driven material intensity research platform. Scientific Data, 2019, 6, 23.	2.4	66
17	A general data model for socioeconomic metabolism and its implementation in an industrial ecology data commons prototype. Journal of Industrial Ecology, 2019, 23, 1016-1027.	2.8	21
18	A comparative study on the environmental impact of greenhouses: A probabilistic approach. Science of the Total Environment, 2019, 675, 560-569.	3.9	14

Niko Heeren

#	Article	IF	CITATIONS
19	Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environmental Research Letters, 2019, 14, 043004.	2.2	225
20	The future in and of criticality assessments. Journal of Industrial Ecology, 2019, 23, 751-766.	2.8	14
21	Impact of CH2018 Climate Change Scenarios for Switzerland on today's Swiss building stock. Journal of Physics: Conference Series, 2019, 1343, 012004.	0.3	1
22	Retrofit as a carbon sink: The carbon storage potentials of the EU housing stock. Journal of Cleaner Production, 2019, 214, 365-376.	4.6	74
23	Tracking Construction Material over Space and Time: Prospective and Geoâ€referenced Modeling of Building Stocks and Construction Material Flows. Journal of Industrial Ecology, 2019, 23, 253-267.	2.8	111
24	Nullius in Verba1: Advancing Data Transparency in Industrial Ecology. Journal of Industrial Ecology, 2018, 22, 6-17.	2.8	36
25	Is a net life cycle balance for energy and materials achievable for a zero emission single-family building in Norway?. Energy and Buildings, 2018, 168, 457-469.	3.1	28
26	Comparative emission analysis of low-energy and zero-emission buildings. Building Research and Information, 2018, 46, 367-382.	2.0	41
27	Building Inventory and Refurbishment Scenario Database Development for Switzerland. Journal of Industrial Ecology, 2018, 22, 629-642.	2.8	15
28	Building Material Use and Associated Environmental Impacts in China 2000–2015. Environmental Science & Technology, 2018, 52, 14006-14014.	4.6	57
29	A novel integrated framework to evaluate greenhouse energy demand and crop yield production. Renewable and Sustainable Energy Reviews, 2018, 96, 487-501.	8.2	52
30	GIS-based Decision Support System for Building Retrofit. Energy Procedia, 2017, 122, 403-408.	1.8	20
31	Big data GIS analysis for novel approaches in building stock modelling. Applied Energy, 2017, 208, 277-290.	5.1	74
32	Life cycle assessment of dynamic building integrated photovoltaics. Solar Energy Materials and Solar Cells, 2016, 156, 75-82.	3.0	47
33	Environmental Impact of Buildings—What Matters?. Environmental Science & Technology, 2015, 49, 9832-9841.	4.6	87
34	Welches sind die ¶kologischsten Holzverwendungen?. Schweizerische Zeitschrift Fur Forstwesen, 2015, 166, 335-338.	0.5	0
35	A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 2013, 20, 45-56.	8.2	85
36	Housing and Mobility Demands of Individual Households and their Life Cycle Assessment. Environmental Science & Technology, 2013, 47, 5988-5997.	4.6	52

#	Article	IF	CITATIONS
37	Towards a 2000 Watt society – assessing building-specific saving potentials of the Swiss residential building stock. International Journal of Sustainable Building Technology and Urban Development, 2012, 3, 43-49.	1.0	9
38	Innovation for sustainability: toward a sustainable urban future in industrialized cities. Sustainability Science, 2012, 7, 91-100.	2.5	31