
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9559397/publications.pdf Version: 2024-02-01

YUN-LEI TENC

#	Article	IF	CITATIONS
1	Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie - International Edition, 2019, 58, 5226-5231.	13.8	150
2	Electrochemical Reduction of CO ₂ to CO by a Heterogeneous Catalyst of Fe–Porphyrin-Based Metal–Organic Framework. ACS Applied Energy Materials, 2018, 1, 4662-4669.	5.1	123
3	An Ultrastable Luminescent Metal–Organic Framework for Selective Sensing of Nitroaromatic Compounds and Nitroimidazole-Based Drug Molecules. Crystal Growth and Design, 2018, 18, 431-440.	3.0	115
4	The first tritopic bridging ligand 1,3,5-tris(4-carboxyphenyl)-benzene (H ₃ BTB) functionalized porous polyoxometalate-based metal–organic framework (POMOF): from design, synthesis to electrocatalytic properties. Dalton Transactions, 2015, 44, 1435-1440.	3.3	55
5	Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie, 2019, 131, 5280-5285.	2.0	52
6	Construction of (3,4)-Connected Polyoxometalate-Based Metal–Organic Frameworks (POMOFs) from Triangular Carboxylate and Tetrahedral Zn ₄ -ε-Keggin. Crystal Growth and Design, 2017, 17, 5309-5317.	3.0	43
7	Fabrication of a water-stable luminescent MOF with an open Lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions. Journal of Materials Science, 2019, 54, 10644-10655.	3.7	40
8	Highly sensitive and recyclable sensing of Fe3+ ions based on a luminescent anionic [Cd(DMIPA)]2- framework with exposed thioether group in the snowflake-like channels. Journal of Solid State Chemistry, 2019, 270, 493-499.	2.9	31
9	Improvement of hydrogen desorption kinetics in the LiH–NH3 system by addition of KH. Chemical Communications, 2011, 47, 12227.	4.1	30
10	lmproved dehydrogenation properties of the LiNH ₂ –LiH system by doping with alkali metal hydroxide. Journal of Materials Chemistry A, 2015, 3, 905-911.	10.3	29
11	Solvent- and Temperature-Induced Multiple Crystal Phases: Crystal Structure, Selective Adsorption, and Separation of Organic Dye in Three S-Containing {[Cd(MIPA)] _{<i>nn</i>â[^] Homologues. Crystal Growth and Design, 2016, 16, 6363-6370.}	3.0	29
12	Revealing the structure–activity relationship of two Cu-porphyrin-based metal–organic frameworks for the electrochemical CO ₂ -to-HCOOH transformation. Dalton Transactions, 2020, 49, 14995-15001.	3.3	28
13	Spontaneous resolution of 3D chiral hexadecavanadate-based frameworks incorporating achiral flexible and rigid ligands. CrystEngComm, 2013, 15, 2783-2785.	2.6	22
14	Reactions of Laser-Ablated Zinc and Cadmium Atoms with CO:Â Infrared Spectra of the Zn(CO)x(x= 1â^'3), CdCO-, and Cd(CO)2Molecules in Solid Neon. Journal of Physical Chemistry A, 2006, 110, 7092-7096.	2.5	20
15	Reactions of Yttrium and Scandium Atoms with Acetylene: A Matrix Isolation Infrared Spectroscopic and Theoretical Study. Journal of Physical Chemistry A, 2010, 114, 9069-9073.	2.5	18
16	Thermochemical Reduction of Carbon Dioxide with Alkali Metal Hydrides, Producing Methane and Hydrogen Fuels at Moderate Temperatures. Energy & Fuels, 2016, 30, 6620-6625.	5.1	18
17	Construction of (3,6)-connected polyoxometalate-based metal–organic frameworks (POMOFs) from triangular carboxylate and dimerized Zn ₄ -ε-Keggin. Dalton Transactions, 2017, 46, 14286-14292.	3.3	17
18	Mechanochemical synthesis of COx-free hydrogen and methane fuel mixtures at room temperature from light metal hydrides and carbon dioxide. Applied Energy, 2017, 204, 741-748.	10.1	17

#	Article	IF	CITATIONS
19	Highly Selective and Efficient Reduction of CO ₂ to Methane by Activated Alkaline Earth Metal Hydrides without a Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 4831-4841.	6.7	17
20	Enhanced hydrogen desorption reaction kinetics by optimizing the reaction conditions and doping potassium compounds in the LiH–NH3 system. International Journal of Hydrogen Energy, 2014, 39, 13838-13843.	7.1	16
21	A novel hydrogen storage system of KLi3(NH2)4-4LiH with superior cycling stability. International Journal of Hydrogen Energy, 2016, 41, 5371-5377.	7.1	16
22	A new É›-Keggin polyoxometalate-based metal-organic framework: From design and synthesis to electrochemical hydrogen evolution. Catalysis Communications, 2021, 161, 106367.	3.3	16
23	Catalytic Effect of Tiâ^'Liâ^'N Compounds in the Liâ^'Nâ^'H System on Hydrogen Desorption Properties. Journal of Physical Chemistry C, 2011, 115, 589-593.	3.1	15
24	A New 2D Network Constructed from the Extension of Transition-Metal-Grafted Îμ-Keggin Polyoxoanion by a Bridging Organic Carboxylate. Journal of Cluster Science, 2015, 26, 1595-1605.	3.3	14
25	Infrared spectroscopic and theoretical studies on the formation of Au2NOâ^ and AunNO (n=2–5) in solid argon. Journal of Chemical Physics, 2009, 130, 134511.	3.0	13
26	Reactions of Group 14 Metal Atoms with Acetylene: A Matrix Isolation Infrared Spectroscopic and Theoretical Study. Journal of Physical Chemistry A, 2009, 113, 12163-12170.	2.5	13
27	The ternary amide KLi3(NH2)4: an important intermediate in the potassium compound-added Li–N–H systems. RSC Advances, 2014, 4, 10702-10707.	3.6	13
28	Matrix Isolation Infrared Spectroscopic and Density Functional Theoretical Studies on the Reactions of Lanthanum Atoms with Acetylene. Journal of Physical Chemistry A, 2008, 112, 10274-10279.	2.5	12
29	Hydrogen desorption improvement of the LiNH2–LiH–KF composite. International Journal of Hydrogen Energy, 2016, 41, 16122-16128.	7.1	12
30	Mechanochemical reactions of alkali borohydride with CO2 under ambient temperature. Journal of Solid State Chemistry, 2019, 277, 828-832.	2.9	11
31	Highly Selective Roomâ€Temperature Catalystâ€Free Reduction of Alkaline Carbonates to Methane by Metal Hydrides. Energy Technology, 2019, 7, 1800719.	3.8	11
32	Infrared Spectroscopic and Density Functional Theory Study on the Reactions of Rhodium and Cobalt Atoms with Carbon Dioxide in Rare-Gas Matrixes. Journal of Physical Chemistry A, 2007, 111, 7793-7799.	2.5	10
33	Matrix Isolation Infrared Spectroscopic Studies and Density Functional Theory Calculations of the MNN, (MN) ₂ (M = Y and La), and Y ₃ NN Molecules. Journal of Physical Chemistry A, 2008, 112, 3607-3613.	2.5	10
34	Synthesis, Crystal Structure and Electrochemical Properties of A New 2D Network Containing Linear {ε-H2PMo 8 V Mo 4 VI O40Zn4}â^ž Inorganic Chain. Journal of Cluster Science, 2016, 27, 361-371.	3.3	10
35	Superior effect of RbF on decreasing the dehydrogenation operating temperature of the LiNH2LiH system. Journal of Alloys and Compounds, 2017, 697, 62-67.	5.5	10
36	One-step and sustainable preparations of inert additive-doped CaO-based CO2 adsorbents by hydrogenation reduction of CaCO3. Chemical Engineering Journal, 2021, 418, 129479.	12.7	10

#	Article	IF	CITATIONS
37	Atomically dispersed Fe–N–C catalyst displaying ultra-high stability and recyclability for efficient electroreduction of CO ₂ to CO. Chemical Communications, 2022, 58, 2512-2515.	4.1	10
38	Dehydrogenation reactions of mechanically activated alkali metal hydrides with CO2 at room temperature. International Journal of Hydrogen Energy, 2018, 43, 5068-5076.	7.1	9
39	The effect of KH on enhancing the dehydrogenation properties of the Li–N–H system and its catalytic mechanism. Physical Chemistry Chemical Physics, 2018, 20, 11116-11122.	2.8	9
40	Cyclic reaction-induced enhancement in the dehydrogenation performances of the KNH2-doped LiNH2 and LiH system. International Journal of Hydrogen Energy, 2020, 45, 25927-25934.	7.1	9
41	Storage and in-situ preparation of H2-mixed CH4 fuel by thermochemical reduction of inorganic carbonates with activated metal hydrides. Fuel, 2021, 292, 120395.	6.4	9
42	Acquiring an effective CaO-based CO ₂ sorbent and achieving selective methanation of CO ₂ . RSC Advances, 2020, 10, 21509-21516.	3.6	8
43	The interesting and superior hydrogenation properties of potassium-doped LiNH2 and its ternary mixed-cationic amide. RSC Advances, 2013, 3, 16977.	3.6	7
44	Effect of alkali metal amides on the improvement of dehydrogenation for the LiH–NH3 system. Journal of Materials Science, 2016, 51, 911-916.	3.7	7
45	Matrix-Isolation Infrared Spectroscopic and Density Functional Theory Studies on Reactions of Laser-Ablated Lead and Tin Atoms with Water Molecules. Bulletin of the Chemical Society of Japan, 2007, 80, 2149-2156.	3.2	6
46	Matrix-Isolation Infrared Spectroscopic and Theoretical Studies on Reactions of Laser-Ablated Germanium Atoms with Water Molecules. Journal of Physical Chemistry A, 2007, 111, 6225-6231.	2.5	6
47	Effects of MWCNTs on improving the hydrogen storage performance of the Li3N system. International Journal of Hydrogen Energy, 2017, 42, 987-995.	7.1	6
48	Efficiently generating COx-free hydrogen by mechanochemical reaction between alkali hydrides and carbon dioxide. International Journal of Hydrogen Energy, 2019, 44, 18159-18168.	7.1	6
49	Matrix Isolation Infrared Spectroscopic and Density Functional Theory Studies on the Reactions of Yttrium and Lanthanum Hydrides with Dinitrogen. Journal of Physical Chemistry A, 2008, 112, 7594-7599.	2.5	5
50	Synergetic effects of K, Ti and F on the hydrogen storage properties of the Li N H system. International Journal of Hydrogen Energy, 2017, 42, 17149-17156.	7.1	5
51	Matrix Isolation Infrared Spectroscopic and Density Functional Theory Studies on the Reactions of Yttrium and Lanthanum Hydrides with Carbon Monoxide. Journal of Physical Chemistry A, 2007, 111, 13380-13386.	2.5	4
52	Diverse CdII coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands. Journal of Solid State Chemistry, 2016, 244, 12-19.	2.9	4
53	Thermal Reduction of CO ₂ with Activated Alkali Metal Aluminum Hydrides for Selective Methanation. Energy & Fuels, 2020, 34, 11210-11218.	5.1	4
54	Alkaline Earth Metal-Induced Hydrogenation of the CaO-Captured CO ₂ to Methane at Room Temperature. Industrial & Engineering Chemistry Research, 2022, 61, 10124-10132.	3.7	4

#	Article	IF	CITATIONS
55	Selective methanation of carbonate@carbon composite formed by the reaction of carbon dioxide with alkali metals. International Journal of Energy Research, 2021, 45, 3385-3396.	4.5	3
56	Improved mechanochemical methanation performance of the metal carbonate-hydride system. Solid State Sciences, 2020, 109, 106398.	3.2	2
57	One-pot preparation of H2-mixed CH4 fuel and CaO-based CO2 sorbent by the hydrogenation of waste clamshell/eggshell at room temperature. Journal of Environmental Management, 2022, 319, 115617.	7.8	2
58	Synthesis, characterization, and crystal structure of a 3D coordination polymer [Cd2·(H3C9N12)·Cl·(H2O)2]. Inorganic and Nano-Metal Chemistry, 2017, 47, 549-552.	1.6	1
59	Metal carbonates-induced solution-free dehydrogenation of alkaline earth metal hydrides at room temperature. Journal of Solid State Chemistry, 2020, 289, 121485.	2.9	1
60	Matrix Isolation Infrared Spectroscopic and Density Functional Theory Studies on the Reactions of Dysprosium Hydride with Carbon Monoxide. Bulletin of the Chemical Society of Japan, 2008, 81, 1575-1579.	3.2	0
61	Synthesis, structure and luminescent properties of halogenated isophthalic acid-directed frameworks in virtue of flexible and semiflexible N-containing ligands. Journal of Molecular Structure, 2017, 1139, 202-208.	3.6	0
62	Frontispiz: Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie, 2019, 131, .	2.0	0
63	Frontispiece: Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
64	Impact of grain size and reactant ratio on reduction of CO2 to CH4 by alkali metal hydride. Green Materials, 2021, 9, 120-130.	2.1	0
65	Highly efficient reduction of CO 2 by magnesium and calcium hydride producing H 2 â€mixed CH 4 : Effect of the particle size and the molar ratio of reactant. , 0, , .		0