
Edson José Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9559344/publications.pdf Version: 2024-02-01

EDSON LOSÃO SOARES

#	Article	IF	CITATIONS
1	Mechanical scission of a flexible polymer (polyethylene oxide) under highly turbulent flows through abrupt contractions. Journal of Non-Newtonian Fluid Mechanics, 2022, 301, 104740.	2.4	8
2	Bubble entrapment condition in Bingham materials. Journal of Non-Newtonian Fluid Mechanics, 2021, 295, 104616.	2.4	4
3	Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows. Journal of Non-Newtonian Fluid Mechanics, 2020, 276, 104225.	2.4	48
4	Drag reduction in turbulent flows by diutan gum: A very stable natural drag reducer. Journal of Non-Newtonian Fluid Mechanics, 2020, 276, 104223.	2.4	21
5	Rheological properties of a cross-linked gel based on guar gum for hydraulic fracture of oil wells. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	2
6	The role played by the flexible polymer polyacrylamide (PAM) and the rigid polymer xanthan gum (XG) on drag in Taylor–Couette geometry: from Taylor's vortexes to fully turbulent flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	7
7	Revisiting the Taylor-Culick approximation: Retraction of an axisymmetric filament. Physical Review Fluids, 2020, 5, .	2.5	21
8	Drag Reduction by Polymers in Saline Nutrient Solutions. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .	1.5	5
9	Influence of Adding Asphaltenes and Gas Condensate on CO ₂ Hydrate Formation in Water–CO ₂ –Oil Systems. Energy & Fuels, 2019, 33, 7138-7146.	5.1	25
10	The role played by the aging of aloe vera on its drag reduction properties in turbulent flows. Journal of Non-Newtonian Fluid Mechanics, 2019, 265, 1-10.	2.4	17
11	Start-up of waxy crude oils in pipelines. Journal of Non-Newtonian Fluid Mechanics, 2019, 263, 61-68.	2.4	15
12	Analysis of CO ₂ Hydrates in Crude Oils from a Rheological Point of View. Energy & Fuels, 2018, 32, 2733-2741.	5.1	21
13	Emulsion effects on the yield stress of gelled waxy crude oils. Fuel, 2018, 222, 444-456.	6.4	20
14	Modeling and numerical simulations of polymer degradation in a drag reducing plane Couette flow. Journal of Non-Newtonian Fluid Mechanics, 2018, 256, 1-7.	2.4	21
15	Drag Reducing Flows by Polymer Solutions in Annular Spaces. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	1.5	7
16	Friction Coefficients for Bingham and Power-Law Fluids in Abrupt Contractions and Expansions. Journal of Fluids Engineering, Transactions of the ASME, 2017, 139, .	1.5	9
17	Transient aspects of drag reducing plane Couette flows. Journal of Non-Newtonian Fluid Mechanics, 2017, 241, 60-69.	2.4	31
18	An experimental investigation on the Newtonian–Newtonian and viscoplastic–Newtonian displacement in a capillary tube, Journal of Non-Newtonian Fluid Mechanics, 2017, 247, 207-220	2.4	19

Edson José Soares

#	Article	IF	CITATIONS
19	Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows. Physics of Fluids, 2017, 29, .	4.0	15
20	Active and hibernating turbulence in drag-reducing plane Couette flows. Physical Review Fluids, 2017, 2, .	2.5	25
21	Viscoplastic dimensionless numbers. Journal of Non-Newtonian Fluid Mechanics, 2016, 238, 57-64.	2.4	77
22	Effect of combined polymers on the loss of efficiency caused by mechanical degradation in drag reducing flows through straight tubes. Rheologica Acta, 2016, 55, 559-569.	2.4	21
23	Okra as a drag reducer for high Reynolds numbers water flows. Rheologica Acta, 2016, 55, 983-991.	2.4	19
24	Drag Reduction in Synthetic Seawater by Flexible and Rigid Polymer Addition Into a Rotating Cylindrical Double Gap Device. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	1.5	23
25	Loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes with imposed pressure. Physics of Fluids, 2015, 27, .	4.0	34
26	Immiscible liquid–liquid pressure-driven flow in capillary tubes: Experimental results and numerical comparison. Physics of Fluids, 2015, 27, .	4.0	12
27	Critical quantities on the yielding process of waxy crude oils. Rheologica Acta, 2015, 54, 479-499.	2.4	44
28	Drag increase at the very start of drag reducing flows in a rotating cylindrical double gap device. Journal of Non-Newtonian Fluid Mechanics, 2014, 212, 73-79.	2.4	30
29	Heat transfer to Herschel–Bulkley materials flowing in the entrance of tubes with an imposed wall temperature profile. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36, 245-255.	1.6	1
30	Viscoplastic–viscoplastic displacement in a plane channel with interfacial tension effects. Chemical Engineering Science, 2013, 91, 54-64.	3.8	18
31	Drag reduction induced by flexible and rigid molecules in a turbulent flow into a rotating cylindrical double gap device: Comparison between Poly (ethylene oxide), Polyacrylamide, and Xanthan Gum. Journal of Non-Newtonian Fluid Mechanics, 2013, 202, 72-87.	2.4	81
32	Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device. Journal of Non-Newtonian Fluid Mechanics, 2012, 179-180, 9-22.	2.4	75
33	Motion of a power-law long drop in a capillary tube filled by a Newtonian fluid. Chemical Engineering Science, 2012, 72, 126-141.	3.8	9
34	Immiscible Newtonian displacement by a viscoplastic material in a capillary plane channel. Rheologica Acta, 2011, 50, 403-422.	2.4	18
35	Friction losses for power-law and viscoplastic materials in an entrance of a tube and an abrupt contraction. Journal of Petroleum Science and Engineering, 2011, 76, 224-235.	4.2	14
36	Residual mass and flow regimes for the immiscible liquid–liquid displacement in a plane channel. International Journal of Multiphase Flow, 2011, 37, 640-646.	3.4	14

#	Article	IF	CITATIONS
37	Further remarks on numerical investigation on gas displacement of a shear-thinning liquid and a visco-plastic material in capillary tubes. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 448-452.	2.4	24
38	Flow regimes for the immiscible liquid–liquid displacement in capillary tubes with complete wetting of the displaced liquid. Journal of Fluid Mechanics, 2009, 641, 63-84.	3.4	28
39	Immiscible liquid-liquid displacement in capillary tubes: viscoelastic effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2008, 30, 160-165.	1.6	12
40	Numerical investigation on gas-displacement of a shear-thinning liquid and a visco-plastic material in capillary tubes. Journal of Non-Newtonian Fluid Mechanics, 2007, 144, 149-159.	2.4	44
41	Heat transfer to viscoplastic materials flowing axially through concentric annuli. International Journal of Heat and Fluid Flow, 2003, 24, 762-773.	2.4	23