
Cheryl L Stucky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9558924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When soft touch hurts: How hugs become painful after spinal cord injury. , 2022, , 341-351.		0
2	Innovations and advances in modelling and measuring pain in animals. Nature Reviews Neuroscience, 2022, 23, 70-85.	4.9	72
3	Contextual control of conditioned pain tolerance and endogenous analgesic systems. ELife, 2022, 11, .	2.8	4
4	Human cells and networks of pain: Transforming pain target identification and therapeutic development. Neuron, 2021, 109, 1426-1429.	3.8	47
5	Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Science Translational Medicine, 2021, 13, .	5.8	41
6	Piezo2 mechanosensitive ion channel is located to sensory neurons and nonneuronal cells in rat peripheral sensory pathway: implications in pain. Pain, 2021, 162, 2750-2768.	2.0	35
7	Sensory-specific peripheral nerve pathology in a rat model of Fabry disease. Neurobiology of Pain (Cambridge, Mass), 2021, 10, 100074.	1.0	6
8	Cutaneous pain in disorders affecting peripheral nerves. Neuroscience Letters, 2021, 765, 136233.	1.0	14
9	Fabry disease pain: patient and preclinical parallels. Pain, 2021, 162, 1305-1321.	2.0	28
10	Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Molecular Pain, 2020, 16, 174480692092542.	1.0	31
11	Keratinocytes contribute to normal cold and heat sensation. ELife, 2020, 9, .	2.8	49
12	Molecular Biology of the Nociceptor/Transduction. , 2020, , 88-119.		0
13	Gabapentin alleviates chronic spontaneous pain and acute hypoxiaâ€related pain in a mouse model of sickle cell disease. British Journal of Haematology, 2019, 187, 246-260.	1.2	12
14	A Novel Sex-Dependent Target for the Treatment of Postoperative Pain: The NLRP3 Inflammasome. Frontiers in Neurology, 2019, 10, 622.	1.1	31
15	Blocking COX-2 for sickle cell pain relief. Blood, 2019, 133, 1924-1925.	0.6	4
16	A Mouse Model of Postoperative Pain. Bio-protocol, 2019, 9, .	0.2	22
17	End points for sickle cell disease clinical trials: patient-reported outcomes, pain, and the brain. Blood Advances, 2019, 3, 3982-4001.	2.5	51
18	The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. Journal of Biological Chemistry, 2019, 294, 18873-18880.	1.6	81

#	Article	IF	CITATIONS
19	Children and adolescents with sickle cell disease have worse cold and mechanical hypersensitivity during acute painful events. Pain, 2019, 160, 407-416.	2.0	27
20	NOD-like receptor protein 3 inflammasome drives postoperative mechanical pain in a sex-dependent manner. Pain, 2019, 160, 1794-1816.	2.0	38
21	Peripheral nerve pathology in sickle cell disease mice. Pain Reports, 2019, 4, e765.	1.4	8
22	Neuronal transient receptor potential (TRP) channels and noxious sensory detection in sickle cell disease. Neuroscience Letters, 2019, 694, 184-191.	1.0	12
23	Chemokine (c-c motif) receptor 2 mediates mechanical and cold hypersensitivity in sickle cell disease mice. Pain, 2018, 159, 1652-1663.	2.0	25
24	Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. ELife, 2018, 7, .	2.8	143
25	Uncovering the Cells and Circuits of Touch in Normal and Pathological Settings. Neuron, 2018, 100, 349-360.	3.8	121
26	Quantitative Top-Down Mass Spectrometry Identifies Proteoforms Differentially Released during Mechanical Stimulation of Mouse Skin. Journal of Proteome Research, 2018, 17, 2635-2648.	1.8	7
27	Optogenetic Inhibition of CGRPα Sensory Neurons Reveals Their Distinct Roles in Neuropathic and Incisional Pain. Journal of Neuroscience, 2018, 38, 5807-5825.	1.7	59
28	Neuropathic pain in a Fabry disease rat model. JCI Insight, 2018, 3, .	2.3	46
29	Primary sensory neuron-specific interference of TRPV1 signaling by adeno-associated virus-encoded TRPV1 peptide aptamer attenuates neuropathic pain. Molecular Pain, 2017, 13, 174480691771704.	1.0	19
30	Sickle cell disease: a natural model of acute and chronic pain. Pain, 2017, 158, S79-S84.	2.0	41
31	Characterization of a mouse model of sickle cell trait: parallels to human trait and a novel finding of cutaneous sensitization. British Journal of Haematology, 2017, 179, 657-666.	1.2	8
32	Sensory Neuron-Specific Deletion of TRPA1 Results in Mechanical Cutaneous Sensory Deficits. ENeuro, 2017, 4, ENEURO.0069-16.2017.	0.9	46
33	Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes. PLoS ONE, 2016, 11, e0151602.	1.1	24
34	Selective antagonism of TRPA1 produces limited efficacy in models of inflammatory- and neuropathic-induced mechanical hypersensitivity in rats. Molecular Pain, 2016, 12, 174480691667776.	1.0	27
35	Substance P is increased in patients with sickle cell disease and associated with haemolysis and hydroxycarbamide use. British Journal of Haematology, 2016, 175, 237-245.	1.2	30
36	Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 2016, 534, 494-499.	13.7	239

#	Article	IF	CITATIONS
37	Bedding Material Affects Mechanical Thresholds, Heat Thresholds, and Texture Preference. Journal of Pain, 2016, 17, 50-64.	0.7	38
38	Nociceptor Sensitization Depends on Age and Pain Chronicity. ENeuro, 2016, 3, ENEURO.0115-15.2015.	0.9	105
39	Loosening Pain's Grip by Tightening TRPV1-TRPA1 Interactions. Neuron, 2015, 85, 661-663.	3.8	8
40	HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron, 2015, 87, 124-138.	3.8	160
41	Repurposing a leukocyte elastase inhibitor for neuropathic pain. Nature Medicine, 2015, 21, 429-430.	15.2	9
42	AMC2850, a potent and selective TRPM8 antagonist, is not effective in rat models of inflammatory mechanical hypersensitivity and neuropathic tactile allodynia. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 465-476.	1.4	21
43	CaMKII Controls Whether Touch Is Painful. Journal of Neuroscience, 2015, 35, 14086-14102.	1.7	29
44	Amplified Mechanically Gated Currents in Distinct Subsets of Myelinated Sensory Neurons following In Vivo Inflammation of Skin and Muscle. Journal of Neuroscience, 2015, 35, 9456-9462.	1.7	12
45	Chemical Structure and Morphology of Dorsal Root Ganglion Neurons from Naive and Inflamed Mice. Journal of Biological Chemistry, 2014, 289, 34241-34249.	1.6	24
46	Contribution of Transient Receptor Potential Ankyrin 1 to Chronic Pain in Aged Mice With Complete Freund's Adjuvant–Induced Arthritis. Arthritis and Rheumatology, 2014, 66, 2380-2390.	2.9	38
47	A gain-of-function voltage-gated sodium channel 1.8 mutation drives intense hyperexcitability of A- and C-fiber neurons. Pain, 2014, 155, 896-905.	2.0	34
48	A novel mitochondrially-targeted apocynin derivative prevents hyposmia and loss of motor function in the leucine-rich repeat kinase 2 (LRRK2R1441G) transgenic mouse model of Parkinson's disease. Neuroscience Letters, 2014, 583, 159-164.	1.0	45
49	Piezo2 is required for Merkel-cell mechanotransduction. Nature, 2014, 509, 622-626.	13.7	590
50	Cold hypersensitivity increases with age in mice with sickle cell disease. Pain, 2014, 155, 2476-2485.	2.0	54
51	Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. ELife, 2014, 3, .	2.8	208
52	TRPV1, but not TRPA1, in Primary Sensory Neurons Contributes to Cutaneous Incision-Mediated Hypersensitivity. Molecular Pain, 2013, 9, 1744-8069-9-9.	1.0	46
53	Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia, 2013, 61, 1418-1428.	2.5	128
54	Mechanical Sensitization of Cutaneous Sensory Fibers in the Spared Nerve Injury Mouse Model. Molecular Pain, 2013, 9, 1744-8069-9-61.	1.0	52

#	Article	IF	CITATIONS
55	Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in Câ€ŧype units after painful nerve injury. Journal of Physiology, 2013, 591, 1111-1131.	1.3	81
56	A â€~toothache tree' alkylamide inhibits Aĺ mechanonociceptors to alleviate mechanical pain. Journal of Physiology, 2013, 591, 3325-3340.	1.3	59
57	Patients with sickle cell disease have increased sensitivity to cold and heat. American Journal of Hematology, 2013, 88, 37-43.	2.0	127
58	Opportunities for Live Cell FT-Infrared Imaging: Macromolecule Identification with 2D and 3D Localization. International Journal of Molecular Sciences, 2013, 14, 22753-22781.	1.8	26
59	TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. Journal of Neurophysiology, 2012, 107, 913-922.	0.9	77
60	Sickle Cell Mice Exhibit Mechanical Allodynia and Enhanced Responsiveness in Light Touch Cutaneous Mechanoreceptors. Molecular Pain, 2012, 8, 1744-8069-8-62.	1.0	44
61	TRPA1 Is Functionally Expressed Primarily by IB4-Binding, Non-Peptidergic Mouse and Rat Sensory Neurons. PLoS ONE, 2012, 7, e47988.	1.1	94
62	Dietary Supplementation with Docosahexanoic Acid (DHA) Improves RBC Flexibility and Reduces Cold Hypersensitivity in Mice with Sickle Cell Disease Blood, 2012, 120, 2116-2116.	0.6	1
63	TRPA1 Mediates Mechanical Sensitization in Nociceptors during Inflammation. PLoS ONE, 2012, 7, e43597.	1.1	136
64	Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy. Journal of Neurophysiology, 2011, 106, 905-914.	0.9	50
65	The Dynamic TRPA1 Channel: A Suitable Pharmacological Pain Target?. Current Pharmaceutical Biotechnology, 2011, 12, 1689-1697.	0.9	31
66	Transient receptor potential vanilloid 1 mediates pain in mice with severe sickle cell disease. Blood, 2011, 118, 3376-3383.	0.6	133
67	Patients with Sickle Cell Disease Have Increased Sensitivity to Cold and Heat Stimuli, 2. Blood, 2011, 118, 2116-2116.	0.6	2
68	Physiological Basis of Tingling Paresthesia Evokedby Hydroxy-α-Sanshool. Journal of Neuroscience, 2010, 30, 4353-4361.	1.7	74
69	Spinal Nerve Ligation in Mouse Upregulates TRPV1 Heat Function in Injured IB4-Positive Nociceptors. Journal of Pain, 2010, 11, 588-599.	0.7	50
70	TRPA1 Mediates Mechanical Currents in the Plasma Membrane of Mouse Sensory Neurons. PLoS ONE, 2010, 5, e12177.	1.1	123
71	TRPA1 Modulates Mechanotransduction in Cutaneous Sensory Neurons. Journal of Neuroscience, 2009, 29, 4808-4819.	1.7	280
72	Roles of transient receptor potential channels in pain. Brain Research Reviews, 2009, 60, 2-23.	9.1	154

5

#	Article	IF	CITATIONS
73	Pharmacological Blockade of TRPA1 Inhibits Mechanical Firing in Nociceptors. Molecular Pain, 2009, 5, 1744-8069-5-19.	1.0	140
74	Cannabinoid receptor agonists inhibit depolarization-induced calcium influx in cerebellar granule neurons. Journal of Neurochemistry, 2008, 79, 371-381.	2.1	41
75	Species and strain differences in rodent sciatic nerve anatomy: Implications for studies of neuropathic pain. Pain, 2008, 136, 188-201.	2.0	237
76	Constitutive Activity at the Cannabinoid CB ₁ Receptor Is Required for Behavioral Response to Noxious Chemical Stimulation of TRPV1: Antinociceptive Actions of CB1 Inverse Agonists. Journal of Neuroscience, 2008, 28, 11593-11602.	1.7	78
77	Chemical Interactions between Fibrosarcoma Cancer Cells and Sensory Neurons Contribute to Cancer Pain. Journal of Neuroscience, 2007, 27, 10289-10298.	1.7	57
78	Stomatin and Sensory Neuron Mechanotransduction. Journal of Neurophysiology, 2007, 98, 3802-3808.	0.9	44
79	The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 2007, 448, 204-208.	13.7	1,110
80	Transgenic Expression of a Dominant-Negative ASIC3 Subunit Leads to Increased Sensitivity to Mechanical and Inflammatory Stimuli. Journal of Neuroscience, 2005, 25, 9893-9901.	1.7	115
81	Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain, 2005, 115, 37-49.	2.0	132
82	The P2Y agonist UTP activates cutaneous afferent fibers. Pain, 2004, 109, 36-44.	2.0	66
83	Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain, 2003, 106, 229-239.	2.0	396
84	Differential Response Properties of IB4-Positive and -Negative Unmyelinated Sensory Neurons to Protons and Capsaicin. Journal of Neurophysiology, 2003, 89, 513-524.	0.9	138
85	The 5-HT ₃ Subtype of Serotonin Receptor Contributes to Nociceptive Processing via a Novel Subset of Myelinated and Unmyelinated Nociceptors. Journal of Neuroscience, 2002, 22, 1010-1019.	1.7	341
86	Neurotrophin-4. Current Biology, 2002, 12, 1401-1404.	1.8	59
87	GFR α 2/neurturin signalling regulates noxious heat transduction in isolectin B 4 â€binding mouse sensory neurons. Journal of Physiology, 2002, 545, 43-50.	1.3	55
88	The mammalian sodium channel BNC1 is required for normal touch sensation. Nature, 2000, 407, 1007-1011.	13.7	469
89	Postnatal loss of Merkel cells, but not of slowly adapting mechanoreceptors in mice lacking the neurotrophin receptor p75. European Journal of Neuroscience, 1999, 11, 3963-3969.	1.2	50
90	Stomatin, a MEC-2 Like Protein, Is Expressed by Mammalian Sensory Neurons. Molecular and Cellular Neurosciences, 1999, 13, 391-404.	1.0	62

#	Article	IF	CITATIONS
91	Isolectin B ₄ -Positive and -Negative Nociceptors Are Functionally Distinct. Journal of Neuroscience, 1999, 19, 6497-6505.	1.7	418
92	Point Mutation in trkB Causes Loss of NT4-Dependent Neurons without Major Effects on Diverse BDNF Responses. Neuron, 1998, 21, 335-345.	3.8	180
93	Neurotrophin 4 Is Required for the Survival of a Subclass of Hair Follicle Receptors. Journal of Neuroscience, 1998, 18, 7040-7046.	1.7	71
94	The Low-Affinity Neurotrophin Receptor p75 Regulates the Function But Not the Selective Survival of Specific Subpopulations of Sensory Neurons. Journal of Neuroscience, 1997, 17, 4398-4405.	1.7	69
95	Receptive Properties of Mouse Sensory Neurons Innervating Hairy Skin. Journal of Neurophysiology, 1997, 78, 1841-1850.	0.9	330