

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9558746/publications.pdf Version: 2024-02-01

7HAO LI

#	Article	IF	CITATIONS
1	Recent Advances in Applied Fluorescent Polymeric Gels. ACS Applied Polymer Materials, 2022, 4, 3131-3152.	2.0	14
2	Multicolor Fluorescent Polymeric Hydrogels. Angewandte Chemie, 2021, 133, 8690-8706.	1.6	12
3	Multicolor Fluorescent Polymeric Hydrogels. Angewandte Chemie - International Edition, 2021, 60, 8608-8624.	7.2	163
4	Bioinspired Hydrogels with Muscle-Like Structure for AIEgen-Guided Selective Self-Healing. CCS Chemistry, 2021, 3, 1146-1156.	4.6	42
5	Aggregationâ€Induced Emissionâ€Active Gels: Fabrications, Functions, and Applications. Advanced Materials, 2021, 33, e2100021.	11.1	105
6	Hydrophilicityâ€Hydrophobicity Transformation, Thermoresponsive Morphomechanics, and Crack Multifurcation Revealed by AIEgens in Mechanically Strong Hydrogels. Advanced Materials, 2021, 33, e2101500.	11.1	46
7	Sensitive and specific detection of peroxynitrite and <i>in vivo</i> imaging of inflammation by a "simple―AIE bioprobe. Materials Chemistry Frontiers, 2021, 5, 1830-1835.	3.2	19
8	Phototriggered Aggregationâ€induced Emission and Direct Generation of 4D Soft Patterns. Advanced Materials, 2021, 33, e2105113.	11.1	40
9	Gel-Based Luminescent Conductive Materials and Their Applications in Biosensors and Bioelectronics. Materials, 2021, 14, 6759.	1.3	4
10	Polysaccharide-based recoverable double-network hydrogel with high strength and self-healing properties. Journal of Materials Chemistry B, 2020, 8, 794-802.	2.9	46
11	Bioinspired Simultaneous Changes in Fluorescence Color, Brightness, and Shape of Hydrogels Enabled by AlEgens. Advanced Materials, 2020, 32, e1906493.	11.1	160
12	A Functioning Macroscopic "Rubik's Cube―Assembled via Controllable Dynamic Covalent Interactions. Advanced Materials, 2019, 31, e1902365.	11.1	84
13	Hydrogels: A Functioning Macroscopic "Rubik's Cube―Assembled via Controllable Dynamic Covalent Interactions (Adv. Mater. 40/2019). Advanced Materials, 2019, 31, 1970286.	11.1	0
14	Molecular Transmission: Visible and Rate-Controllable Photoreactivity and Synergy of Aggregation-Induced Emission and Host–Guest Assembly. Chemistry of Materials, 2019, 31, 1092-1100.	3.2	46
15	Bioinspired Tunable Sacrificial Bonds Endowing Tetraâ€PEG Based PU Hydrogel with Tunable Mechanical Properties, Shapeâ€Memory, and Selfâ€Healing Functions. Macromolecular Materials and Engineering, 2018, 303, 1700542.	1.7	7
16	Preparation of a photo- and thermo-responsive topological gel from anthracene-modified polyrotaxanes. Soft Matter, 2018, 14, 2767-2771.	1.2	10
17	Tetraâ€PEGâ€Based Nanoâ€Enhanced Hydrogel with Excellent Mechanical Properties and Multiâ€Functions. Macromolecular Materials and Engineering, 2018, 303, 1800325.	1.7	8
18	Mixed polycarbonate prodrug nanoparticles with reduction/pH dual-responsive and charge conversional properties. Reactive and Functional Polymers, 2017, 120, 74-82.	2.0	9

Zhao Li

#	Article	IF	CITATIONS
19	One-pot synthesis of highly mechanical and redox-degradable polyurethane hydrogels based on tetra-PEG and disulfide/thiol chemistry. RSC Advances, 2016, 6, 48863-48869.	1.7	17
20	Synthesis and character of novel polycarbonate for constructing biodegradable multi-stimuli responsive delivery system. Journal of Polymer Science Part A, 2016, 54, 3583-3592.	2.5	18
21	Facile construction of near-monodisperse and dual responsive polycarbonate mixed micelles with the ability of pH-induced charge reversal for intracellular delivery of antitumor drugs. Journal of Materials Chemistry B, 2016, 4, 6081-6093.	2.9	17
22	Hydroxypropyl-β-CD vs. its α-homologue for a 3D modified polyrotaxane network formation and properties: the relationship between modified CD and polymer revealed through comparison. Soft Matter, 2016, 12, 7089-7101.	1.2	9
23	Self-assembly of pH-responsive biodegradable mixed micelles based on anionic and cationic polycarbonates for doxorubicin delivery. Colloids and Surfaces B: Biointerfaces, 2016, 145, 392-400.	2.5	24
24	Preparation of a High-Strength Hydrogel with Slidable and Tunable Potential Functionalization Sites. Macromolecules, 2016, 49, 373-386.	2.2	30
25	Facile functionalization of a tetrahedron-like PEG macromonomer-based fluorescent hydrogel with high strength and its heavy metal ion detection. Journal of Materials Chemistry A, 2015, 3, 1158-1163.	5.2	37
26	Synthesis and properties of tunable thermoresponsive aliphatic polycarbonate copolymers with oligo ethylene glycol containing thioether and/or sulphone groups. RSC Advances, 2015, 5, 64832-64840.	1.7	12