Jindrich Musil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9558687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 2000, 125, 322-330.	2.2	959
2	Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surface and Coatings Technology, 2002, 154, 304-313.	2.2	602
3	Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012, 207, 50-65.	2.2	576
4	Reactive magnetron sputtering of thin films: present status and trends. Thin Solid Films, 2005, 475, 208-218.	0.8	329
5	Toughness of hard nanostructured ceramic thin films. Surface and Coatings Technology, 2007, 201, 5148-5152.	2.2	312
6	Superhard nanocomposite Ti1â^'xAlxN films prepared by magnetron sputtering. Thin Solid Films, 2000, 365, 104-109.	0.8	243
7	Magnetron sputtering of hard nanocomposite coatings and their properties. Surface and Coatings Technology, 2001, 142-144, 557-566.	2.2	205
8	ZrN/Cu nanocomposite film—a novel superhard material. Surface and Coatings Technology, 1999, 120-121, 179-183.	2.2	200
9	A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films, 2002, 415, 151-159.	0.8	190
10	Microstructure and properties of nanocomposite Ti–B–N and Ti–B–C coatings. Surface and Coatings Technology, 1999, 120-121, 405-411.	2.2	170
11	Flexible hard nanocomposite coatings. RSC Advances, 2015, 5, 60482-60495.	1.7	168
12	Lowâ€energy (â^¼100 eV) ion irradiation during growth of TiN deposited by reactive magnetron sputtering: Effects of ion flux on film microstructure. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 434-438.	0.9	157
13	Structure–property relationships in single- and dual-phase nanocrystalline hard coatings. Surface and Coatings Technology, 2003, 174-175, 725-731.	2.2	148
14	Structure and properties of hard and superhard Zr–Cu–N nanocomposite coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 289, 189-197.	2.6	139
15	Thermal stability of alumina thin films containing Î ³ -Al2O3 phase prepared by reactive magnetron sputtering. Applied Surface Science, 2010, 257, 1058-1062.	3.1	115
16	Hard and superhard Zr–Ni–N nanocomposite films. Surface and Coatings Technology, 2001, 139, 101-109.	2.2	114
17	Tribological and mechanical properties of nanocrystalline-TiC/a-C nanocomposite thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 244-249.	0.9	114
18	Thermal stability of PVD hard coatings. Vacuum, 2003, 71, 279-284.	1.6	113

#	Article	IF	CITATIONS
19	Magnetron sputtering of films with controlled texture and grain size. Materials Chemistry and Physics, 1998, 54, 116-122.	2.0	111
20	Pulsed dc Magnetron Discharges and their Utilization in Plasma Surface Engineering. Contributions To Plasma Physics, 2004, 44, 426-436.	0.5	110
21	Reactive sputtering of TiN films at large substrate to target distances. Vacuum, 1990, 40, 435-444.	1.6	105
22	Low-pressure magnetron sputtering. Vacuum, 1998, 50, 363-372.	1.6	104
23	Low-stress superhard Tiî—,B films prepared by magnetron sputtering. Surface and Coatings Technology, 2003, 174-175, 744-753.	2.2	97
24	Low-temperature sputtering of crystalline TiO2 films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 521-528.	0.9	97
25	Hard nanocomposite Zr–Y–N coatings, correlation between hardness and structure. Surface and Coatings Technology, 2000, 127, 99-106.	2.2	94
26	Structure of TiN coatings deposited at relatively high rates and low temperatures by magnetron sputtering. Thin Solid Films, 1988, 156, 53-64.	0.8	93
27	Ion-assisted sputtering of TiN films. Surface and Coatings Technology, 1990, 43-44, 259-269.	2.2	86
28	New results in d.c. reactive magnetron deposition of TiNx films. Thin Solid Films, 1988, 167, 107-120.	0.8	84
29	Magnetron sputtered Crî—,Niî—,N and Tiî—,Moî—,N films: comparison of mechanical properties. Surface and Coatings Technology, 2001, 142-144, 146-151.	2.2	75
30	High-power pulsed sputtering using a magnetron with enhanced plasma confinement. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 42-47.	0.9	75
31	Nanocrystalline and nanocomposite CrCu and CrCu–N films prepared by magnetron sputtering. Surface and Coatings Technology, 1999, 115, 32-37.	2.2	73
32	Role of energy in low-temperature high-rate formation of hydrophilic TiO2 thin films using pulsed magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 666-674.	0.9	73
33	Pulsed dc magnetron discharge for high-rate sputtering of thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 420-424.	0.9	71
34	Composite TiN–Ni thin films deposited by reactive magnetron sputter ion-plating. Surface and Coatings Technology, 1998, 110, 168-172.	2.2	70
35	Reactive magnetron sputtering of TiOx films. Surface and Coatings Technology, 2005, 193, 107-111.	2.2	69
36	Hard amorphous nanocomposite coatings with oxidation resistance above 1000°C. Advances in Applied Ceramics, 2008, 107, 148-154.	0.6	68

#	Article	IF	CITATIONS
37	Hysteresis effect in reactive sputtering: a problem of system stability. Journal Physics D: Applied Physics, 1986, 19, L187-L190.	1.3	67
38	Reactive deposition of tin films using an unbalanced magnetron. Surface and Coatings Technology, 1989, 39-40, 487-497.	2.2	67
39	Sputtering systems with magnetically enhanced ionization for ion plating of TiN films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 1318-1324.	0.9	65
40	Hydrophobicity of Thin Films of Compounds of Lowâ€Electronegativity Metals. Journal of the American Ceramic Society, 2014, 97, 2713-2717.	1.9	62
41	Ion flux characteristics in high-power pulsed magnetron sputtering discharges. Europhysics Letters, 2007, 77, 45002.	0.7	61
42	Unbalanced magnetrons and new sputtering systems with enhanced plasma ionization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 1171-1177.	0.9	60
43	Recent advances in magnetron sputtering technology. Surface and Coatings Technology, 1998, 100-101, 280-286.	2.2	60
44	Arc evaporation of hard coatings: Process and film properties. Surface and Coatings Technology, 1990, 43-44, 299-311.	2.2	58
45	Composition, structure, microhardness and residual stress of W–Ti–N films deposited by reactive magnetron sputtering. Thin Solid Films, 2002, 408, 136-147.	0.8	58
46	Structure and mechanical properties of magnetron sputtered Zr–Ti–Cu–N films. Surface and Coatings Technology, 2003, 166, 243-253.	2.2	58
47	Structure and properties of magnetron sputtered Zr–Si–N films with a high (≥25 at.%) Si content. Thin Solid Films, 2005, 478, 238-247.	0.8	57
48	Properties of magnetron sputtered Al–Si–N thin films with a low and high Si content. Surface and Coatings Technology, 2008, 202, 3485-3493.	2.2	56
49	Dependence of microstructure of TiN coatings on their thickness. Thin Solid Films, 1988, 158, 225-232.	0.8	55
50	Nanostructure of photocatalytic TiO2 films sputtered at temperatures below 200°C. Applied Surface Science, 2008, 254, 3793-3800.	3.1	55
51	Microwave plasma: its characteristics and applications in thin film technology. Vacuum, 1986, 36, 161-169.	1.6	54
52	Structure-hardness relations in sputtered Ti–Al–V–N films. Thin Solid Films, 2003, 444, 189-198.	0.8	54
53	Magnetron sputtering of alloy and alloy-based films. Thin Solid Films, 1999, 343-344, 47-50.	0.8	53
54	Mechanical characterization of a-C:H:SiOx coatings synthesized using radio-frequency plasma-assisted chemical vapor deposition method. Thin Solid Films, 2015, 590, 299-305.	0.8	53

#	Article	IF	CITATIONS
55	Cathodic arc evaporation in thin film technology. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 1740-1748.	0.9	52
56	Structure and mechanical properties of DC magnetron sputtered TiC/Cu films. Vacuum, 2006, 81, 531-538.	1.6	52
57	A perspective of magnetron sputtering in surface engineering. Surface and Coatings Technology, 1999, 112, 162-169.	2.2	50
58	Properties of reactively sputtered W–Si–N films. Surface and Coatings Technology, 2006, 200, 3886-3895.	2.2	50
59	Structural analysis of tin films by Seemann-Bohlin X-ray diffraction. Thin Solid Films, 1990, 193-194, 401-408.	0.8	48
60	Transparent Zr–Al–O oxide coatings with enhanced resistance to cracking. Surface and Coatings Technology, 2012, 206, 2105-2109.	2.2	48
61	Reactive deposition of hard coatings. Surface and Coatings Technology, 1989, 39-40, 301-314.	2.2	47
62	Formation of nanocrystalline NiCr–N films by reactive dc magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 3301-3304.	0.9	47
63	TiNx coatings prepared by d.c. reactive magnetron sputtering. Thin Solid Films, 1986, 136, 229-239.	0.8	46
64	Influence of the pumping speed on the hysteresis effect in the reactive sputtering of thin films. Vacuum, 1987, 37, 729-738.	1.6	46
65	Studies on Magnetron Sputtering Assisted by Inductively Coupled RF Plasma for Enhanced Metal Ionization. Japanese Journal of Applied Physics, 1999, 38, 4291-4295.	0.8	45
66	Relation of deposition conditions of Ti-N films prepared by d.c. magnetron sputtering to their microstructure and macrostress. Surface and Coatings Technology, 1993, 60, 484-488.	2.2	44
67	Low pressure magnetron sputtering and selfsputtering discharges. Vacuum, 1996, 47, 307-311.	1.6	44
68	Highâ€rate magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2187-2191.	0.9	44
69	Hard a-Si ₃ N ₄ /MeN _x Nanocomposite Coatings with High Thermal Stability and High Oxidation Resistance. Solid State Phenomena, 2007, 127, 31-36.	0.3	44
70	Effect of ion bombardment on properties of hard reactively sputtered Ti(Fe)Nx films. Surface and Coatings Technology, 2004, 177-178, 289-298.	2.2	43
71	Discharge in dual magnetron sputtering system. IEEE Transactions on Plasma Science, 2005, 33, 338-339.	0.6	43
72	Difference in high-temperature oxidation resistance of amorphous Zr–Si–N and W–Si–N films with a high Si content. Applied Surface Science, 2006, 252, 8319-8325.	3.1	43

#	Article	IF	CITATIONS
73	Effect of addition of Cu into ZrOx film on its properties. Surface and Coatings Technology, 2006, 200, 6792-6800.	2.2	43
74	Magnetron sputtering of TiOxNy films. Vacuum, 2006, 81, 285-290.	1.6	43
75	High-temperature oxidation resistance of Ta–Si–N films with a high Si content. Surface and Coatings Technology, 2006, 200, 4091-4096.	2.2	42
76	Relationship between mechanical properties and coefficient of friction of sputtered a-C/Cu composite thin films. Diamond and Related Materials, 2008, 17, 1905-1911.	1.8	42
77	X-ray analysis of strain in titanium nitride layers. Thin Solid Films, 1987, 149, 49-60.	0.8	41
78	X-ray analysis of heat-treated titanium nitride films. Thin Solid Films, 1989, 170, 201-210.	0.8	41
79	Structure and microhardness of magnetron sputtered ZrCu and ZrCu-N films. Vacuum, 1999, 52, 269-275.	1.6	41
80	Comparison of hydrophilic properties of TiO2 thin films prepared by sol–gel method and reactive magnetron sputtering system. Thin Solid Films, 2011, 519, 6944-6950.	0.8	41
81	Thermal stability of magnetron sputtered Zr–Si–N films. Surface and Coatings Technology, 2006, 201, 3368-3376.	2.2	40
82	Two-phase single layer Al-O-N nanocomposite films with enhanced resistance to cracking. Surface and Coatings Technology, 2012, 206, 4230-4234.	2.2	39
83	Recent progress in plasma nitriding. Vacuum, 2000, 59, 940-951.	1.6	37
84	Protective over-layer coating preventing cracking of thin films deposited on flexible substrates. Surface and Coatings Technology, 2014, 240, 275-280.	2.2	37
85	Physical properties and high-temperature oxidation resistance of sputtered Si[sub 3]N[sub 4]â^•MoN[sub x] nanocomposite coatings. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1568.	1.6	36
86	Properties of nanocrystalline Al–Cu–O films reactively sputtered by DC pulse dual magnetron. Applied Surface Science, 2011, 258, 1762-1767.	3.1	36
87	Plasma spray deposition of graded metal-ceramic coatings. Surface and Coatings Technology, 1992, 52, 211-220.	2.2	34
88	Flexible hard Al-Si-N films for high temperature operation. Surface and Coatings Technology, 2016, 307, 1112-1118.	2.2	34
89	Îμ-Ti2N phase growth control in titanium nitride films. Thin Solid Films, 1989, 170, L55-L58.	0.8	33
90	Hard and superhard nanocomposite Al–Cu–N films prepared by magnetron sputtering. Surface and Coatings Technology, 2001, 142-144, 603-609.	2.2	33

#	Article	IF	CITATIONS
91	Measurement of hardness of superhard films by microindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 340, 281-285.	2.6	33
92	Physical and mechanical properties of sputtered Ta–Si–N films with a high (≥40 at %) content of Si. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 646.	0.9	33
93	High-rate reactive deposition of transparent SiO2 films containing low amount of Zr from molten magnetron target. Thin Solid Films, 2010, 519, 775-777.	0.8	32
94	The effect of addition of Al in ZrO2 thin film on its resistance to cracking. Surface and Coatings Technology, 2012, 207, 355-360.	2.2	32
95	Contamination of Magnetron Sputtered Metallic Films by Oxygen From Residual Atmosphere in Deposition Chamber. Plasma Processes and Polymers, 2015, 12, 416-421.	1.6	32
96	Absorption of electromagnetic waves in a radially inhomogeneous plasma at high magnetic fields. Plasma Physics, 1975, 17, 1147-1153.	0.9	31
97	TiN films grown by reactive magnetron sputtering with enhanced ionization at low discharge pressures. Vacuum, 1990, 41, 2233-2238.	1.6	31
98	Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering. Nanostructure Science and Technology, 2006, , 407-463.	0.1	31
99	Enhanced hardness in sputtered Zr–Ni–N films. Surface and Coatings Technology, 2006, 200, 6293-6297.	2.2	31
100	Flexible hydrophobic ZrN nitride films. Vacuum, 2016, 131, 34-38.	1.6	30
101	Anomalous absorption of intense electromagnetic waves in plasma at high magnetic fields. Plasma Physics, 1974, 16, 735-739.	0.9	29
102	Formation of high temperature phases in sputter deposited Tiâ€based films below 100 °C. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2247-2250.	0.9	29
103	A study on the synthesis and microstructure of WC–TiN superlattice coating. Surface and Coatings Technology, 2000, 131, 372-377.	2.2	29
104	Evolution of film temperature during magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1083-1090.	0.9	29
105	Microhardness of Ti-N films containing the epsilon -Ti2N phase. Journal Physics D: Applied Physics, 1988, 21, 1657-1658.	1.3	28
106	Modeling of inhomogeneous film deposition and target erosion in reactive sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 1560-1565.	0.9	27
107	On picostructural models of physically vapor-deposited films of titanium nitride. Surface and Coatings Technology, 1991, 49, 181-187.	2.2	27
108	Growth and properties of hard coatings prepared by physical vapor deposition methods. Surface and Coatings Technology, 1992, 54-55, 287-296.	2.2	27

#	Article	IF	CITATIONS
109	Nucleation of ultrathin silver layer by magnetron sputtering in Ar/N2 plasma. Surface and Coatings Technology, 2013, 228, S86-S90.	2.2	27
110	High-rate pulsed reactive magnetron sputtering of oxide nanocomposite coatings. Vacuum, 2013, 87, 96-102.	1.6	26
111	Antibacterial Cr–Cu–O films prepared by reactive magnetron sputtering. Applied Surface Science, 2013, 276, 660-666.	3.1	25
112	Evolution of microstructure and macrostress in sputtered hard Ti(Al,V)N films with increasing energy delivered during their growth by bombarding ions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	25
113	Inductively-Coupled-Plasma-Assisted Planar Magnetron Discharge for Enhanced Ionization of Sputtered Atoms. Japanese Journal of Applied Physics, 1997, 36, 4568-4571.	0.8	24
114	A comparison of internal plasma parameters in a conventional planar magnetron and a magnetron with additional plasma confinement. Plasma Sources Science and Technology, 1997, 6, 46-52.	1.3	24
115	Plasma nitriding enhanced by hollow cathode discharge – a new method for formation of superhard nanocomposite coatings on steel surfaces. Vacuum, 1999, 55, 171-175.	1.6	24
116	The Role of Energy in Formation of Sputtered Nanocomposite Films. Materials Science Forum, 2005, 502, 291-296.	0.3	24
117	Present status of thin oxide films creation in a microwave plasma. European Physical Journal D, 1980, 30, 688-708.	0.4	23
118	Deposition of thin films using microwave plasmas: present status and trends. Vacuum, 1996, 47, 145-155.	1.6	23
119	The effect of Al composition on the microstructure and mechanical properties of WC–TiAlN superhard composite coating. Surface and Coatings Technology, 2001, 142-144, 596-602.	2.2	23
120	RF magnetron sputtering of silver thin film in Ne, Ar and Kr discharges—plasma characterisation and surface morphology. Surface and Coatings Technology, 2013, 228, S466-S469.	2.2	23
121	Effect of energy on structure, microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering. Surface and Coatings Technology, 2017, 332, 190-197.	2.2	23
122	A method of formation of thin oxide films on silicon in a microwave magnetoactive oxygen plasma. Journal Physics D: Applied Physics, 1975, 8, L195-L197.	1.3	22
123	Morphology and Microstructure of Hard and Superhard Zr–Cu–N Nanocomposite Coatings. Japanese Journal of Applied Physics, 2002, 41, 6529-6533.	0.8	22
124	Hard Nanocomposite Coatings Prepared by Magnetron Sputtering. Key Engineering Materials, 2002, 230-232, 613-622.	0.4	22
125	In-situ X-ray diffraction studies of time and thickness dependence of crystallization of amorphous TiO2 thin films and stress evolution. Thin Solid Films, 2010, 519, 1649-1654.	0.8	22
126	High-rate low-temperature dc pulsed magnetron sputtering of photocatalytic TiO2 films: the effect of repetition frequency. Nanoscale Research Letters, 2007, 2, 123-129.	3.1	21

#	Article	IF	CITATIONS
127	Investigation of the Negative Ions in Ar/O ₂ Plasma of Magnetron Sputtering Discharge with Al:Zn Target by Ion Mass Spectrometry. Plasma Processes and Polymers, 2011, 8, 459-464.	1.6	21
128	Flexible Antibacterial Coatings. Molecules, 2017, 22, 813.	1.7	21
129	Planar magnetron sputtering discharge enhanced with radio frequency or microwave magnetoactive plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1999-2006.	0.9	20
130	Two-functional DC sputtered Cu-containing TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 158-162.	2.0	20
131	Tribological properties and oxidation resistance of tungsten and tungsten nitride films at temperatures up to 500†°C. Tribology International, 2019, 132, 211-220.	3.0	20
132	Penetration of a strong electromagnetic wave in an inhomogeneous plasma generated by ECR using a magnetic beach. Plasma Physics, 1971, 13, 471-476.	0.9	19
133	100 GW pulsed iodine photodissociation laser system PERUN I. European Physical Journal D, 1988, 38, 1337-1356.	0.4	19
134	Ti-Si-N Films with a High Content of Si. Plasma Processes and Polymers, 2007, 4, S574-S578.	1.6	19
135	Two-Functional Direct Current Sputtered Silver-Containing Titanium Dioxide Thin Films. Nanoscale Research Letters, 2009, 4, 313-320.	3.1	19
136	Generation of Positive and Negative Oxygen lons in Magnetron Discharge During Reactive Sputtering of Alumina. Plasma Processes and Polymers, 2010, 7, 910-914.	1.6	19
137	Hard Nanocomposite Coatings. , 2014, , 325-353.		19
138	Effect of energy on the formation of flexible hard Al-Si-N films prepared by magnetron sputtering. Vacuum, 2016, 133, 43-45.	1.6	19
139	Rectangular magnetron with full target erosion. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 555-563.	0.9	18
140	Formation of Ti1–x Si x and Ti1–x Si x N films by magnetron co-sputtering. European Physical Journal D, 1999, 49, 359-372.	0.4	18
141	The depth profile analysis of W-Si-N coatings after thermal annealing. Surface and Coatings Technology, 2002, 161, 111-119.	2.2	18
142	Flexible antibacterial Al–Cu–N films. Surface and Coatings Technology, 2015, 264, 114-120.	2.2	18
143	Absorption of microwave energy in a plasma column at high magnetic fields. Physics Letters, Section A: General, Atomic and Solid State Physics, 1974, 50, 309-310.	0.9	17
144	Differences between microwave and RF activation of nitrogen for the PECVD process. Journal Physics D: Applied Physics, 1982, 15, L79-L82.	1.3	17

#	Article	IF	CITATIONS
145	Laser-stimulated growth of the εî—,Ti2N phase in Tiî—,N films during d.c. reactive magnetron sputter deposition. Thin Solid Films, 1991, 196, 265-270.	0.8	17
146	Plasma nitriding combined with a hollow cathode discharge sputtering at high pressures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 2636-2643.	0.9	17
147	Magnetron sputtering of alloy-based films and its specifity. European Physical Journal D, 1998, 48, 1209-1224.	0.4	17
148	Control of macrostress σ in reactively sputtered Mo–Al–N films by total gas pressure. Vacuum, 2006, 80, 588-592.	1.6	17
149	Novel model for film growth based on surface temperature developing during magnetron sputtering. Surface and Coatings Technology, 2007, 202, 486-493.	2.2	17
150	Formation of crystalline Al–Ti–O thin films and their properties. Surface and Coatings Technology, 2008, 202, 6064-6069.	2.2	17
151	Flexible antibacterial Zr-Cu-N thin films resistant to cracking. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	17
152	Optimized magnetic field shape for low pressure magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 389-393.	0.9	16
153	Relationship between structure and mechanical properties in hard Al–Si–Cu–N films prepared by magnetron sputtering. Thin Solid Films, 2002, 413, 121-130.	0.8	16
154	Coefficient of friction and wear of sputtered a-C thin coatings containing Mo. Surface and Coatings Technology, 2010, 205, 1486-1490.	2.2	16
155	β- (Me1, Me2) and MeNx films deposited by magnetron sputtering: Novel heterostructural alloy and compound films. Surface and Coatings Technology, 2018, 337, 75-81.	2.2	16
156	Microstructure of titanium nitride thin films controlled by ion bombardment in a magnetron-sputtering device. Surface and Coatings Technology, 1994, 64, 111-117.	2.2	15
157	Optical emission spectra and ion energy distribution functions in TiN deposition process by reactive pulsed magnetron sputtering. Surface and Coatings Technology, 2005, 200, 835-840.	2.2	15
158	Plasma Drift in Dual Magnetron Discharge. IEEE Transactions on Plasma Science, 2008, 36, 1412-1413.	0.6	15
159	Protection of brittle film against cracking. Applied Surface Science, 2016, 370, 306-311.	3.1	15
160	Mass spectrometry investigation of magnetron sputtering discharges. Vacuum, 2017, 143, 438-443.	1.6	15
161	Effect of the polarization of the electromagnetic wave on wave energy absorption caused by the linear transformation of waves. European Physical Journal D, 1972, 22, 133-137.	0.4	14
162	Optical emission spectra from microwave oxygen plasma produced by surfatron discharge. European Physical Journal D, 1993, 43, 533-540.	0.4	14

#	Article	IF	CITATIONS
163	Production of Ti films with controlled texture. Surface and Coatings Technology, 1995, 76-77, 274-279.	2.2	14
164	Planar magnetron with additional plasma confinement. Vacuum, 1995, 46, 341-347.	1.6	14
165	Microwave plasma nitriding of a low-alloy steel. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2715-2721.	0.9	14
166	Magnetron Discharges for Thin Films Plasma Processing. , 2006, , 67-110.		14
167	Effect of Al Addition on Structure and Properties of Sputtered TiC Films. Plasma Processes and Polymers, 2007, 4, S6-S10.	1.6	14
168	Effect of nitrogen on tribological properties of amorphous carbon films alloyed with titanium. Surface and Coatings Technology, 2011, 205, S84-S88.	2.2	14
169	Thermally activated transformations in metastable alumina coatings prepared by magnetron sputtering. Surface and Coatings Technology, 2014, 240, 7-13.	2.2	14
170	Hard Coatings Prepared by Sputtering and Arc Evaporation. Physics of Thin Films, 1993, 17, 79-144.	1.1	14
171	Nitrogen activation for plasma chemical synthesis of thin Si3N4 films. Thin Solid Films, 1983, 102, 107-110.	0.8	13
172	Influence of deposition rate on properties of reactively sputtered TiNx films. Vacuum, 1988, 38, 459-461.	1.6	13
173	A pulsed iodine photodissociation laser with slow pumping. Laser and Particle Beams, 1992, 10, 871-890.	0.4	13
174	Thermal annealing of sputtered Al–Si–Cu–N films. Vacuum, 2003, 72, 21-28.	1.6	13
175	Synthesis of TiO2 photocatalyst and study on their improvement technology of photocatalytic activity. Surface and Coatings Technology, 2005, 200, 534-538.	2.2	13
176	Protective Zr-containing SiO2 coatings resistant to thermal cycling in air up to 1400°C. Surface and Coatings Technology, 2009, 203, 1502-1507.	2.2	13
177	Retardation of electromagnetic waves by helices of large diameters. European Physical Journal D, 1979, 29, 175-188.	0.4	12
178	Deposition of copper films by unbalanced d.c. magnetron sputtering. European Physical Journal D, 1995, 45, 249-261.	0.4	12
179	The efficient inject of high microwave powers into the overdense magnetoactive plasma in the waveguide. European Physical Journal D, 1973, 23, 736-741.	0.4	11
180	Plasma oxidation of silicon in a microwave discharge and its specificity. Journal Physics D: Applied Physics, 1979, 12, L61-L63.	1.3	11

#	Article	IF	CITATIONS
181	Microwave measurement of electron density and temperature in plasmas produced by a surfatron at atmospheric pressure. Journal Physics D: Applied Physics, 1980, 13, L25-L28.	1.3	11
182	X-ray diffraction investigations of adherent and free standing TiN coatings deposited by magnetron sputtering. Surface and Coatings Technology, 1990, 41, 377-388.	2.2	11
183	Tiî—,N films created in close vicinity of transition from α-Ti(N) to δ-TiNx phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 140, 660-665.	2.6	11
184	Properties of TiN, ZrN and ZrTiN coatings prepared by cathodic arc evaporation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 163, 211-214.	2.6	11
185	Surface morphology of sputter deposited low melting point metallic thin films. European Physical Journal D, 1994, 44, 565-574.	0.4	11
186	XRD microstructural study of Zn films deposited by unbalanced magnetron sputtering. Thin Solid Films, 1995, 263, 150-158.	0.8	11
187	Anodic plasma nitriding with a molybdenum cathode. Vacuum, 1995, 46, 43-47.	1.6	11
188	Surface Morphology of Magnetron Sputtered TiO2 Films. Plasma Processes and Polymers, 2007, 4, S345-S349.	1.6	11
189	Interrelationships among macrostress, microstructure and mechanical behavior of sputtered hard Ti(Al,V)N films. Materials Letters, 2019, 235, 92-96.	1.3	11
190	Linear transformation of waves in a magnetoactive plasma generated by a strong microwave signal. Plasma Physics, 1970, 12, 17-22.	0.9	10
191	Control of structure in magnetron sputtered thin films. Surface and Coatings Technology, 2001, 142-144, 201-205.	2.2	10
192	PROPERTIES OF HARD NANOCOMPOSITE THIN FILMS. , 2007, , 281-328.		10
193	Mechanical and tribological properties of sputtered Mo–O–N coatings. Surface and Coatings Technology, 2013, 215, 386-392.	2.2	10
194	Effect of energy on macrostress in Ti(Al,V)N films prepared by magnetron sputtering. Vacuum, 2018, 158, 52-59.	1.6	10
195	Effect of ion bombardment on the structure of sputtered Tiî—,N films. Nuclear Instruments & Methods in Physics Research B, 1989, 37-38, 897-901.	0.6	9
196	Protection of aluminium by duplex coatings. Surface and Coatings Technology, 1995, 76-77, 341-347.	2.2	9
197	Effect of ion bombardment on the surface morphology of Zn-films sputtered in an unbalanced magnetron. Vacuum, 1995, 46, 203-210.	1.6	9
198	Discharge characteristics of a facing target sputtering device using unbalanced magnetrons. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2182-2186.	0.9	9

#	Article	IF	CITATIONS
199	(Zr,Ti,O) alloy films with enhanced hardness and resistance to cracking prepared by magnetron sputtering. Surface and Coatings Technology, 2017, 322, 86-91.	2.2	9
200	Flexible hard (Zr, Si) alloy films prepared by magnetron sputtering. Thin Solid Films, 2019, 688, 137216.	0.8	9
201	Properties of TiN, ZrN and ZrTiN coatings prepared by cathodic arc evaporation. Materials Science and Engineering, 1993, 163, 211-214.	0.1	9
202	Study of crystallization of magnetron sputtered TiO ₂ thin films by X-ray scattering. Zeitschrift Für Kristallographie, Supplement, 2007, 2007, 247-252.	0.5	9
203	Chemiluminescence of the silane — Active nitrogen reactions during PECVD of the silicon nitride films. European Physical Journal D, 1984, 34, 1242-1245.	0.4	8
204	X-ray diffraction study of TiN coatings sputtered at different substrate temperatures. Crystal Research and Technology, 1988, 23, 1483-1492.	0.6	8
205	The structure of Cu-Al films prepared by unbalanced DC magnetron sputtering. Surface and Coatings Technology, 1997, 96, 359-363.	2.2	8
206	Magnetron with gas injection through hollow cathodes machined in sputtered target. Surface and Coatings Technology, 2001, 148, 296-304.	2.2	8
207	Tribological Property of CeO2Films Prepared by Ion-Beam-Assisted Deposition. Japanese Journal of Applied Physics, 2003, 42, 634-639.	0.8	8
208	Effect of Hydrogen on Reactive Sputtering of Transparent Oxide Films. Plasma Processes and Polymers, 2007, 4, S319-S324.	1.6	8
209	Photoactivated Properties of TiO2 Films Prepared by Magnetron Sputtering. Plasma Processes and Polymers, 2007, 4, S531-S535.	1.6	8
210	Mass Spectrometric Characterizations of Ions Generated in RF Magnetron Discharges during Sputtering of Silver in Ne, Ar, Kr an.d Xe Gases. Plasma Processes and Polymers, 2013, 10, 593-602.	1.6	8
211	Growth and properties of hard coatings prepared by physical vapor deposition methods. Surface and Coatings Technology, 1992, 54-55, 287-296.	2.2	8
212	The negative role of the fast electrons in the microwave oxidation of silicon. European Physical Journal D, 1978, 28, 639-643.	0.4	7
213	Localization of a high-power microwaves absorption in the cylindrical plasma column at ωLH ≪ ω ≪ ωce European Physical Journal D, 1978, 28, 533-535.	^{2.} 0.4	7
214	Atmosphericâ€Pressure Glow Discharge CVD of Composite Metallic Aluminium Thin Films. Plasma Processes and Polymers, 2007, 4, 537-547.	1.6	7
215	Elimination of Arcing in Reactive Sputtering of Al ₂ O ₃ Thin Films Prepared by DC Pulse Single Magnetron. Plasma Processes and Polymers, 2011, 8, 500-504.	1.6	7
216	Magnetron deposited TiO2thin films - crystallization and temperature dependence of microstructure and phase composition. Zeitschrift FÃ1⁄4r Kristallographie, Supplement, 2008, 2008, 287-294.	0.5	7

#	Article	IF	CITATIONS
217	Time and thickness dependence of crystallization of amorphous magnetron deposited TiO2thin films. Zeitschrift Für Kristallographie, Supplement, 2009, 2009, 235-240.	0.5	7
218	Direct currents generated by microwave heating in toroidal plasma. Physics Letters, Section A: General, Atomic and Solid State Physics, 1978, 65, 23-24.	0.9	6
219	Plasma diagnostics of low pressure microwave-enhanced d.c. sputtering discharge. Surface and Coatings Technology, 1995, 74-75, 450-454.	2.2	6
220	Some growth peculiarities of a-C:H films in ECR microwave plasma. Vacuum, 2001, 60, 315-323.	1.6	6
221	Plasma and floating potentials in magnetron discharges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	6
222	Irradiation of sputtered Al-Si-N coatings by pulsed 200†keV†C+ ion beam. Vacuum, 2018, 158, 65-67.	1.6	6
223	Simultaneous measurements of thermostimulated exo-electron emission, luminescence, and desorption from a KBr single crystal. Optical Materials, 2020, 109, 110223.	1.7	6
224	Surface processes on KBr single crystals examined by thermostimulated exo-electron emission and desorption. Optical Materials, 2021, 114, 110898.	1.7	6
225	Growth of magnetron sputtered TiO2thin films studied by X-ray scattering. Zeitschrift Für Kristallographie, Supplement, 2007, 2007, 241-246.	0.5	6
226	Measurement of radial distribution of electron density in plasma cylinder with multibeam microwave interferometer. European Physical Journal D, 1966, 16, 782-790.	0.4	5
227	Depth profile analysis of minor elements by GD-OES: Applications to diffusion phenomena. Fresenius' Journal of Analytical Chemistry, 1996, 354, 188-192.	1.5	5
228	CNxHy films obtained by ECR plasma activated CVD: the role of substrate bias (DC, RF) and some other deposition parameters in growth mechanisms. Surface and Coatings Technology, 1999, 116-119, 65-73.	2.2	5
229	NANOCOMPOSITE COATINGS WITH ENHANCED HARDNESS. , 2005, , 345-356.		5
230	THERMAL STABILITY OF HARD TANTALUM BORIDE FILMS. High Temperature Material Processes, 2020, 24, 193-200.	0.2	5
231	Ion acoustic waves in a plasma column, generated by means of ECR. Plasma Physics, 1969, 11, 961-964.	0.9	4
232	Silicon nitride films prepared by PACVD outside the plasma. European Physical Journal D, 1985, 35, 1437-1444.	0.4	4
233	Microwave plasmas in surface treatment technologies. European Physical Journal D, 1990, 40, 1185-1204.	0.4	4
234	Mutual interdiffusion of elements in steel and Ti coating and aluminium and Ti coating couples during plasma nitriding. Surface and Coatings Technology, 1995, 74-75, 609-613.	2.2	4

#	Article	IF	CITATIONS
235	An unbalanced magnetron sputtering device for low and medium pressures. Review of Scientific Instruments, 1995, 66, 4961-4966.	0.6	4
236	Microwave plasma enhanced low pressure d.c. sputtering of copper films. European Physical Journal D, 1996, 46, 353-368.	0.4	4
237	Nanocrystalline titanium carbide thin films deposited by reactive magnetron sputtering. European Physical Journal D, 1998, 48, 963-971.	0.4	4
238	Effect of Ti interlayer and bias on structure and properties of TiN films. European Physical Journal D, 2000, 50, 655-663.	0.4	4
239	A study on the energy distribution for grid-assisting magnetron sputtering. Surface and Coatings Technology, 2005, 200, 421-424.	2.2	4
240	Oxidation of Sputtered Cu, Zr, ZrCu, ZrO2, and Zr-Cu-O Films during Thermal Annealing in Flowing Air. Plasma Processes and Polymers, 2007, 4, S536-S540.	1.6	4
241	Effect of intense electron and ion irradiation on optical absorption of boron carbide thin films. Radiation Effects and Defects in Solids, 2018, 173, 1075-1082.	0.4	4
242	Hard TiN2 dinitride films prepared by magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	4
243	Hard alloy films with enhanced resistance to cracking. Vacuum, 2021, 188, 110186.	1.6	4
244	Comparison of probe and microwave measurements of electron density in plasmatic cylinder. European Physical Journal D, 1965, 15, 391-398.	0.4	3
245	Properties of antennas focused in the Fresnel zone. European Physical Journal D, 1967, 17, 874-888.	0.4	3
246	Characteristics of a reflex discharge in hydrogen in a magnetic field. European Physical Journal D, 1968, 18, 75-85.	0.4	3
247	Efficiency of the microwave energy absorption in a plasma at high magnetic fields. European Physical Journal D, 1973, 23, 167-170.	0.4	3
248	Efficient microwave source of a dense magnetoplasma. European Physical Journal D, 1978, 28, 74-76.	0.4	3
249	Axial decaying of the microwave ECR oxygen plasma. Journal Physics D: Applied Physics, 1988, 21, 1459-1461.	1.3	3
250	Determination of nitrogen content in thick TiN layers by proton backscattering. Nuclear Instruments & Methods in Physics Research B, 1990, 47, 433-438.	0.6	3
251	Study of UV Laser Ablation of Nitrided Steels Using Inductively Coupled Plasma Atomic Emission Spectrometry. Collection of Czechoslovak Chemical Communications, 1996, 61, 1167-1176.	1.0	3
252	XRD Characterization of thin films with low intensity reflection lines. Vacuum, 1996, 47, 1145-1147.	1.6	3

#	Article	IF	CITATIONS
253	Thermal stability and transformation phenomena in magnetron sputtered Al–Cu–O films. Ceramics International, 2015, 41, 6020-6029.	2.3	3
254	Superhard metallic coatings. Materials Letters, 2019, 247, 32-35.	1.3	3
255	Coating of overstoichiometric transition metal nitrides (TMN _x (x > 1)) by magnetron sputtering. Japanese Journal of Applied Physics, 2019, 58, SAAD10.	0.8	3
256	Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering. , 2004, , 43-56.		3
257	Influence of a cylindrical glass tube on the microwave field in the region occupied by the plasma column. Physics Letters, 1964, 9, 24-26.	2.2	2
258	Propagation of electromagnetic waves in hot magnetoactive plasma. European Physical Journal D, 1964, 14, 831-847.	0.4	2
259	Plasma lenses. European Physical Journal D, 1968, 18, 66-74.	0.4	2
260	The properties of magnetoactive plasma generated by high microwave power with variable polarization. European Physical Journal D, 1970, 20, 337-340.	0.4	2
261	Generation of the second harmonic in inhomogeneous magnetoactive plasma. European Physical Journal D, 1971, 21, 148-152.	0.4	2
262	Plasma nitriding of sputtered Ti films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 163, 181-186.	2.6	2
263	Trace Analysis of Ultrapure Arsenic and Selenium by Graphite Furnace Atomic Absorption Spectrometry. Collection of Czechoslovak Chemical Communications, 1994, 59, 1030-1037.	1.0	2
264	Interdiffusion between Ti and steel elements in Ti coating/steel substrate couple. Vacuum, 1996, 47, 871-877.	1.6	2
265	Plasma Surface Engineering 2006. Plasma Processes and Polymers, 2007, 4, 207-207.	1.6	2
266	A Detailed Investigation of Radicals and Ions in ECR Methane/Argon Microwave Discharge. Plasma Processes and Polymers, 2016, 13, 970-980.	1.6	2
267	Plasma nitriding of sputtered Ti films. Materials Science and Engineering, 1993, 163, 181-186.	0.1	2
268	RECENT PROGRESS IN HARD NANOCOMPOSITE COATINGS. High Temperature Material Processes, 2000, 4, 10.	0.2	2
269	Buildup of a narrow plasma channel by microwaves. European Physical Journal D, 1972, 22, 1108-1112.	0.4	1
270	Microwave Diagnostics of a Strong Arc Discharge Plasma in SF ₆ . Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1975, 30, 947-950.	0.7	1

#	Article	IF	CITATIONS
271	New microwave system to determine the complex permittivity of small dielectric and semiconducting samples. European Physical Journal D, 1975, 25, 916-926.	0.4	1
272	Non-destructive measurement of the mobility in semiconductors by means of the microwave Faraday effect. European Physical Journal D, 1976, 26, 485-488.	0.4	1
273	HF heating of a plasma column at frequencies below the electron cyclotron frequency. European Physical Journal D, 1978, 28, 1093-1100.	0.4	1
274	Microhardness of thin TiN y coatings deposited by a circular planar magnetron. European Physical Journal D, 1983, 33, 669-673.	0.4	1
275	ALNx thin films produced by d.c. reactive magnetron sputtering. European Physical Journal D, 1985, 35, 1191-1192.	0.4	1
276	Oxidation of Steel Samples in Air Under the Action of a Photodissociative Iodine Laser. Journal of Modern Optics, 1988, 35, 661-666.	0.6	1
277	Characterization of microwave plasma generated in inhomogeneous magnetic field. European Physical Journal D, 1994, 44, 81-85.	0.4	1
278	Phase transformation in sputtered Ti–SS alloy film during plasma nitriding. Thin Solid Films, 1998, 317, 458-462.	0.8	1
279	Fundamentals of elementary processes in plasmas. Surface and Coatings Technology, 1998, 98, 1557-1564.	2.2	1
280	Title is missing!. European Physical Journal D, 2000, 50, 785-794.	0.4	1
281	Effective nitriding of steels outside low-pressure microwave discharges. Surface and Coatings Technology, 2002, 156, 182-184.	2.2	1
282	Mechanical and tribological properties of Sn-Cu-O films prepared by reactive magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 021504.	0.9	1
283	MICROWAVE GENERATION OF A MAGNETOACTIVE OXYGEN PLASMA FOR OXIDATION. Journal De Physique Colloque, 1979, 40, C7-449-C7-450.	0.2	1
284	Beam width of two antenna systems for plasma diagnostics. European Physical Journal D, 1965, 15, 766-768.	0.4	0
285	The reflection of electromagnetic waves on a plasma layer with the epstein profile of electron density. European Physical Journal D, 1969, 19, 1309-1311.	0.4	0
286	Cutoff of circularly polarized electromagnetic waves in a waveguide filled with axially magnetized plasma. European Physical Journal D, 1975, 25, 155-158.	0.4	0
287	Comparison of oxides prepared in CW and pulse microwave plasma. Physica Status Solidi A, 1980, 61, 631-634.	1.7	0
288	Adhesion of thin TiN films prepared by reactive d.c. magnetron sputtering. European Physical Journal D, 1984, 34, 597-600.	0.4	0

#	Article	IF	CITATIONS
289	Influence of substrate bias and pressure on microstructure of TiN x films reactively sputtered by cylindrical post magnetron. European Physical Journal D, 1986, 36, 697-701.	0.4	0
290	Titanium nitridation by iodine laser irradiation. European Physical Journal D, 1989, 39, 357-359.	0.4	0
291	YBaCuO thin film deposition with iodine photodissociation laser. Journal of Materials Science Letters, 1990, 9, 1336-1337.	0.5	0
292	Creation and behavior of radicals and ions in the Acetylene/Argon microwave ECR discharge. Plasma Processes and Polymers, 2017, 14, 1700062.	1.6	0
293	ARC EVAPORATION OF HARD COATINGS: PROCESS AND FILM PROPERTIES. , 1990, , 299-311.		0
294	ION-ASSISTED SPUTTERING OF TIN FILMS. , 1990, , 259-269.		0
295	On picostructural models of physically vapor-deposited films of titanium nitride. , 1991, , 181-187.		0
296	Growth and properties of hard coatings prepared by physical vapor deposition methods. , 1992, , 287-296.		0