
Krzysztof Jagla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9558563/publications.pdf Version: 2024-02-01

KPZYSZTOF LACIA

#	Article	IF	CITATIONS
1	Evolutionary origins of vertebrate appendicular muscle. Nature, 2000, 408, 82-86.	13.7	164
2	Mouse Lbx1 and human LBX1 define a novel mammalian homeoâ~•gene family related to the Drosophila lady bird genes. Mechanisms of Development, 1995, 53, 345-356.	1.7	147
3	Genetic control of cell morphogenesis during <i>Drosophila melanogaster</i> cardiac tube formation. Journal of Cell Biology, 2008, 182, 249-261.	2.3	101
4	Coordinated development of muscles and tendons of the Drosophilaleg. Development (Cambridge), 2004, 131, 6041-6051.	1.2	92
5	A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. BioEssays, 2001, 23, 125-133.	1.2	79
6	Glycolysis supports embryonic muscle growth by promoting myoblast fusion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18982-18987.	3.3	70
7	Two Novel Drosophila TAF II s Have Homology with Human TAF II 30 and Are Differentially Regulated during Development. Molecular and Cellular Biology, 2000, 20, 1639-1648.	1.1	63
8	The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells. Developmental Biology, 2004, 270, 122-134.	0.9	61
9	Shaping Leg Muscles in Drosophila: Role of ladybird, a Conserved Regulator of Appendicular Myogenesis. PLoS ONE, 2006, 1, e122.	1.1	54
10	Muscle stem cells and model systems for their investigation. Developmental Dynamics, 2007, 236, 3332-3342.	0.8	52
11	Diversification of muscle types: Recent insights from Drosophila. Experimental Cell Research, 2010, 316, 3019-3027.	1.2	49
12	Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. International Journal of Molecular Sciences, 2016, 17, 1941.	1.8	49
13	Cross-repressive interactions of identity genes are essential for proper specification of cardiac and muscular fates in <i>Drosophila</i> . Development (Cambridge), 2002, 129, 1037-1047.	1.2	49
14	Downstream of Identity Genes: Muscle-Type-Specific Regulation of the Fusion Process. Developmental Cell, 2010, 19, 317-328.	3.1	48
15	Diversification of Muscle Types in Drosophila. Current Topics in Developmental Biology, 2012, 98, 277-301.	1.0	48
16	<i>Drosophila</i> small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development (Cambridge), 2015, 142, 994-1005.	1.2	47
17	A distinct class of homeodomain proteins is encoded by two sequentially expressedDrosophilagenes from the 93D/E cluster. Nucleic Acids Research, 1994, 22, 1202-1207.	6.5	46
18	Drosophila adult muscle precursors form a network of interconnected cells and are specified by the rhomboid-triggered EGF pathway. Development (Cambridge), 2010, 137, 1965-1973.	1.2	44

KRZYSZTOF JAGLA

#	Article	IF	CITATIONS
19	Model Organisms in the Fight against Muscular Dystrophy: Lessons from Drosophila and Zebrafish. Molecules, 2015, 20, 6237-6253.	1.7	44
20	Genome-wide view of cell fate specification: <i>ladybird</i> acts at multiple levels during diversification of muscle and heart precursors. Genes and Development, 2007, 21, 3163-3180.	2.7	43
21	Mapping Dmef2-binding regulatory modules by using a ChIP-enriched in silico targets approach. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18479-18484.	3.3	33
22	Muscle niche-driven Insulin-Notch-Myc cascade reactivates dormant Adult Muscle Precursors in Drosophila. ELife, 2015, 4, .	2.8	33
23	Patterning of the cardiac outflow region in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12189-12194.	3.3	32
24	Hedgehog and RAS pathways cooperate in the anterior–posterior specification and positioning of cardiac progenitor cells. Developmental Biology, 2006, 290, 373-385.	0.9	30
25	Novel Drosophila model of myotonic dystrophy type 1: phenotypic characterization and genome-wide view of altered gene expression. Human Molecular Genetics, 2013, 22, 2795-2810.	1.4	30
26	Modifiers of muscle and heart cell fate specification identified by gain-of-function screen in Drosophila. Mechanisms of Development, 2003, 120, 991-1007.	1.7	29
27	Genetic control of muscle development: learning from Drosophila. Journal of Muscle Research and Cell Motility, 2007, 28, 397-407.	0.9	29
28	Neprilysin 4, a novel endopeptidase from <i>Drosophila melanogaster</i> , displays distinct substrate specificities and exceptional solubility states. Journal of Experimental Biology, 2009, 212, 3673-3683.	0.8	26
29	Developmental Expression and Functions of the Small Heat Shock Proteins in Drosophila. International Journal of Molecular Sciences, 2018, 19, 3441.	1.8	25
30	Drosophila Heart as a Model for Cardiac Development and Diseases. Cells, 2021, 10, 3078.	1.8	24
31	Cross-repressive interactions of identity genes are essential for proper specification of cardiac and muscular fates in Drosophila. Development (Cambridge), 2002, 129, 1037-47.	1.2	24
32	Regulation and Functions of the Ims Homeobox Gene during Development of Embryonic Lateral Transverse Muscles and Direct Flight Muscles in Drosophila. PLoS ONE, 2010, 5, e14323.	1.1	21
33	Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg. Frontiers in Physiology, 2016, 7, 22.	1.3	20
34	GEBF-I Activates the Drosophila Sgs3 Gene Enhancer by Altering a Positioned Nucleosomal Core Particle. Journal of Molecular Biology, 1993, 234, 319-330.	2.0	17
35	Cellular components and signals required for the cardiac outflow tract assembly in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2475-2480.	3.3	16
36	Drosophila in the Heart of Understanding Cardiac Diseases: Modeling Channelopathies and Cardiomyopathies in the Fruitfly. Journal of Cardiovascular Development and Disease, 2016, 3, 7.	0.8	16

KRZYSZTOF JAGLA

#	Article	IF	CITATIONS
37	Bruno-3 regulates sarcomere components expression and contributes to muscle phenotypes of Myotonic dystrophy type 1. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	16
38	A novel homeobox nkch4 gene from the Drosophila 93E region. Gene, 1993, 127, 165-171.	1.0	14
39	TRAP-rc, Translating Ribosome Affinity Purification from Rare Cell Populations of Drosophila Embryos. Journal of Visualized Experiments, 2015, , .	0.2	14
40	Dissecting Pathogenetic Mechanisms and Therapeutic Strategies in Drosophila Models of Myotonic Dystrophy Type 1. International Journal of Molecular Sciences, 2018, 19, 4104.	1.8	14
41	Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells, 2020, 9, 1543.	1.8	13
42	Immunological characterization of mononuclear cells in peripheral blood and regional lymph nodes of breast cancer patients. Cancer, 1979, 43, 1308-1313.	2.0	12
43	Muscle Development and Regeneration in Normal and Pathological Conditions: Learning from Drosophila. Current Pharmaceutical Design, 2010, 16, 929-941.	0.9	12
44	Mechanical and non-mechanical functions of Dystrophin can prevent cardiac abnormalities in Drosophila. Experimental Gerontology, 2014, 49, 26-34.	1.2	11
45	Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Seminars in Cell and Developmental Biology, 2017, 64, 171-180.	2.3	10
46	Immunological characterization of mononuclear cells and morphological findings in patients with mammary carcinoma. Journal of Cancer Research and Clinical Oncology, 1979, 95, 65-74.	1.2	9
47	Drosophila Hsp67Bc hot-spot variants alter muscle structure and function. Cellular and Molecular Life Sciences, 2018, 75, 4341-4356.	2.4	9
48	Straightjacket/α2δ3 deregulation is associated with cardiac conduction defects in myotonic dystrophy type 1. ELife, 2019, 8, .	2.8	8
49	Zebrafish as a Model for the Study of Lipid-Lowering Drug-Induced Myopathies. International Journal of Molecular Sciences, 2021, 22, 5654.	1.8	7
50	Tailup plays multiple roles during cardiac outflow assembly in Drosophila. Cell and Tissue Research, 2013, 354, 639-645.	1.5	6
51	Characterization of Drosophila Muscle Stem Cell-Like Adult Muscle Precursors. Methods in Molecular Biology, 2017, 1556, 103-116.	0.4	6
52	Diversification of muscle types in Drosophila embryos. Experimental Cell Research, 2022, 410, 112950.	1.2	6
53	Specification and behavior of AMPs, muscle-committed transient Drosophila stem cells. Fly, 2011, 5, 7-9.	0.9	5
54	Distinct subsets of Eve pericardial cells stabilise cardiac outflow and contribute to Hox-triggered heart morphogenesis in Drosophila. Development (Cambridge), 2017, 145, .	1.2	5

KRZYSZTOF JAGLA

#	Article	IF	CITATIONS
55	The relationship between muscle stem cells and motor neurons. Cellular and Molecular Life Sciences, 2021, 78, 5043-5049.	2.4	5
56	Gelsolin and dCryAB act downstream of muscle identity genes and contribute to preventing muscle splitting and branching in Drosophila. Scientific Reports, 2021, 11, 13197.	1.6	5
57	Insulin-dependent Non-canonical Activation of Notch in Drosophila: A Story of Notch-Induced Muscle Stem Cell Proliferation. Advances in Experimental Medicine and Biology, 2020, 1227, 131-144.	0.8	5
58	Odd-skipped and Stripe act downstream of Notch to promote the morphogenesis of long appendicular tendons in <i>Drosophila</i> . Biology Open, 2019, 8, .	0.6	4
59	<i>Drosophila</i> adult muscle precursor cells contribute to motor axon pathfinding and proper innervation of embryonic muscles. Development (Cambridge), 2020, 147, .	1.2	4
60	GEBF-I in Drosophila species and hybrids: The co-evolution of an enhancer and its cognate factor. Molecular Genetics and Genomics, 1992, 235, 104-112.	2.4	2
61	Transcriptomic and Genetic Analyses Identify the Krüppel-Like Factor Dar1 as a New Regulator of Tube-Shaped Long Tendon Development. Frontiers in Cell and Developmental Biology, 2021, 9, 747563.	1.8	1
62	A polarized nucleus-cytoskeleton-ECM connection in migrating cardioblasts controls heart tube formation in Drosophila. Development (Cambridge), 2021, 148, .	1.2	0
63	ChIP-Enriched in Silico Targets (ChEST), a ChIP-on-Chip Approach Applied to Analyzing Skeletal Muscle Genes. Methods in Molecular Biology, 2012, 798, 543-553.	0.4	0
64	Mécanismes de la cardiogenèse et spécification des lignages cardiaques : de la drosophile aux vertébrés Medecine/Sciences, 1998, 14, 1067.	0.0	0