Yolanda Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms. Mathematics, 2022, 10, 1131.	2.2	4
2	Development of a Wind Turbine Digital-Twin for failure prognosis: First Results. , 2022, , .		1
3	Detection of Jacket Offshore Wind Turbine Structural Damage using an 1D-Convolutional Neural Network with a Support Vector Machine Layer. Journal of Physics: Conference Series, 2022, 2265, 032088.	0.4	1
4	SCADA Data-Driven Wind Turbine Main Bearing Fault Prognosis Based on Principal Component Analysis. Journal of Physics: Conference Series, 2022, 2265, 032107.	0.4	2
5	Wind Turbine Main Bearing Failure Prediction using a Hybrid Neural Network. Journal of Physics: Conference Series, 2022, 2265, 032090.	0.4	1
6	Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM. Energies, 2022, 15, 4381.	3.1	9
7	Early Fault Detection in the Main Bearing of Wind Turbines Based on Gated Recurrent Unit (GRU) Neural Networks and SCADA Data. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5583-5593.	5.8	24
8	Sensors for Structural Health Monitoring and Condition Monitoring. Sensors, 2021, 21, 1558.	3.8	9
9	Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data. Energies, 2021, 14, 1728.	3.1	24
10	Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data. Sensors, 2021, 21, 2228.	3.8	43
11	Unsupervised Damage Detection for Offshore Jacket Wind Turbine Foundations Based on an Autoencoder Neural Network. Sensors, 2021, 21, 3333.	3.8	18
12	Improved Ensemble Learning for Wind Turbine Main Bearing Fault Diagnosis. Applied Sciences (Switzerland), 2021, 11, 7523.	2.5	12
13	Entropy Indicators: An Approach for Low-Speed Bearing Diagnosis. Sensors, 2021, 21, 849.	3.8	16
14	Wind Turbine Main Bearing Condition Monitoring via Convolutional Autoencoder Neural Networks. , 2021, , .		2
15	Low-Speed Bearing Fault Diagnosis Based on Permutation and Spectral Entropy Measures. Applied Sciences (Switzerland), 2020, 10, 4666.	2.5	11
16	Damage Diagnosis for Offshore Wind Turbine Foundations Based on the Fractal Dimension. Applied Sciences (Switzerland), 2020, 10, 6972.	2.5	12
17	Structural Health Monitoring for Jacket-Type Offshore Wind Turbines: Experimental Proof of Concept. Sensors, 2020, 20, 1835.	3.8	20
18	Vibration-Response-Only Structural Health Monitoring for Offshore Wind Turbine Jacket Foundations via Convolutional Neural Networks. Sensors, 2020, 20, 3429.	3.8	39

#	Article	IF	CITATIONS
19	Damage Detection and Diagnosis for Offshore Wind Foundations. , 2020, , .		1
20	REVISION OF THE CONDITION BASED MONITORING TECHNIQUES OF THE PITCH BEARINGS FROM WIND TURBINES. Dyna (Spain), 2019, 94, 636-642.	0.2	2
21	Wind turbine fault detection and classification by means of image texture analysis. Mechanical Systems and Signal Processing, 2018, 107, 149-167.	8.0	81
22	Damage and Fault Detection of Structures Using Principal Component Analysis and Hypothesis Testing. , 2018, , 137-191.		4
23	Advances in Principal Component Analysis. , 2018, , .		26
24	Fault detection and isolation of pitch actuator faults in a floating wind turbine. IFAC-PapersOnLine, 2018, 51, 480-487.	0.9	2
25	Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data. Energies, 2018, 11, 3018.	3.1	43
26	Hysteretic active control of base-isolated buildings. Structural Control and Health Monitoring, 2018, 25, e2206.	4.0	6
27	Wind Turbine Condition Monitoring Strategy through Multiway PCA and Multivariate Inference. Energies, 2018, 11, 749.	3.1	43
28	Hysteresis based vibration control of base-isolated structures. Procedia Engineering, 2017, 199, 1798-1803.	1.2	1
29	Acceleration-based fault-tolerant control design of offshore fixed wind turbines. Structural Control and Health Monitoring, 2017, 24, e1920.	4.0	4
30	Hysteresisâ€Based Design of Dynamic Reference Trajectories to Avoid Saturation in Controlled Wind Turbines. Asian Journal of Control, 2017, 19, 438-449.	3.0	14
31	Hysteretic delta modulator to prevent parameter drift in adaptive-based controllers. , 2017, , .		0
32	Wind Turbine Synchronous Reset Pitch Control. Energies, 2017, 10, 770.	3.1	2
33	On Real-Time Fault Detection in Wind Turbines: Sensor Selection Algorithm and Detection Time Reduction Analysis. Energies, 2016, 9, 520.	3.1	19
34	Wind Turbine Fault Detection through Principal Component Analysis and Statistical Hypothesis Testing. Energies, 2016, 9, 3.	3.1	44
35	Asymmetric modelling and control of an electronic throttle. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2016, 29, 192-204.	1.9	4
36	Passive fault tolerant control strategy in controlled wind turbines. , 2016, , .		1

#	Article	IF	CITATIONS
37	Wind turbines controllers design based on the super-twisting algorithm. , 2016, , .		1
38	Wind Turbine Fault Detection through Principal Component Analysis and Statistical Hypothesis Testing. Advances in Science and Technology, 2016, 101, 45-54.	0.2	7
39	Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator. Energies, 2015, 8, 4300-4316.	3.1	42
40	An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers. Scientific World Journal, The, 2015, 2015, 1-10.	2.1	32
41	Active fault tolerant control for pitch actuators failures tested in a hardware-in-the-loop simulation for wind turbine controllers. , 2015, , .		2
42	Hardware in the Loop Wind Turbine Simulator for Control System Testing. Advances in Industrial Control, 2014, , 449-466.	0.5	3
43	A modified Chua chaotic oscillator and its application to secure communications. Applied Mathematics and Computation, 2014, 247, 712-722.	2.2	52
44	Wind Turbine Control and Monitoring. Advances in Industrial Control, 2014, , .	0.5	46
45	A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded messages. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 991-1003.	3.3	35
46	Power Control Design for Variable-Speedwind Turbines. , 2014, , 227-250.		0
47	Experimental study of semiactive VSC techniques for vehicle vibration reduction. Journal of the Franklin Institute, 2013, 350, 1-18.	3.4	4
48	Power regulation of wind turbines using torque and pitch control. , 2013, , .		7
49	A Chaotic Secure Communication Scheme Based on Duffing Oscillators and Frequency Estimation. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 749-754.	0.4	1
50	Power Control Design for Variable-Speed Wind Turbines. Energies, 2012, 5, 3033-3050.	3.1	50
51	Force-derivative feedback semi-active control of base-isolated buildings using large-scale MR fluid dampers. Structural Control and Health Monitoring, 2012, 19, 120-145.	4.0	31
52	Robust fault detection in hysteretic base-isolation systems. Mechanical Systems and Signal Processing, 2012, 29, 447-456.	8.0	7
53	A Velocity Based Active Vibration Control of Hysteretic Systemsâ(†. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 5243-5248.	0.4	0
54	A velocity based active vibration control of hysteretic systems. Mechanical Systems and Signal Processing, 2011, 25, 465-474.	8.0	8

#	Article	IF	CITATIONS
55	Control of base-isolated systems using force feedback. , 2011, , .		1
56	Fault Detection For Magnetorheological Dampers In Base-Isolation Systems *. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 945-950.	0.4	1
57	Fault detection in base-isolation systems via a restoring force observer. , 2010, , .		7
58	Bounds for quantities of interest and adaptivity in the elementâ€free Galerkin method. International Journal for Numerical Methods in Engineering, 2008, 76, 1782-1818.	2.8	5
59	Goal Oriented Error Estimation for the Element Free Galerkin Method. , 2007, , 265-282.		0
60	Stabilized updated Lagrangian corrected SPH for explicit dynamic problems. International Journal for Numerical Methods in Engineering, 2007, 69, 2687-2710.	2.8	68
61	UPDATED LAGRANGIAN FORMULATION FOR CORRECTED SMOOTH PARTICLE HYDRODYNAMICS. International Journal of Computational Methods, 2006, 03, 383-399.	1.3	6
62	Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 1119-1136.	6.6	64
63	Locking in the incompressible limit: pseudo-divergence-free element free Galerkin. Communications in Numerical Methods in Engineering, 2003, 19, 725-735.	1.3	23
64	Locking in the incompressible limit: pseudo-divergence-free element free Galerkin. Revue Europeenne Des Elements, 2002, 11, 869-892.	0.1	4
65	Condition Monitoring of Wind Turbine Structures through Univariate and Multivariate Hypothesis Testing. , 0, , .		0
66	Convolutional Neural Network for Wind Turbine Failure Classification Based on SCADA Data. Renewable Energy and Power Quality Journal, 0, 19, 447-451.	0.2	0
67	Wind Turbine Multi-Fault Detection based on SCADA Data via an AutoEncoder. Renewable Energy and Power Quality Journal, 0, 19, 487-492.	0.2	1
68	SCADA Data-Driven Wind Turbine Main Bearing Fault Prognosis Based on One-Class Support Vector Machines. Renewable Energy and Power Quality Journal, 0, 19, 338-343.	0.2	4
69	Smart Structural Control Strategies for Offshore Wind Power Generation with Floating Wind Turbines. Renewable Energy and Power Quality Journal, 0, , 1200-1205.	0.2	13
70	A Fault Detection method for pitch actuators faults in Wind Turbines. Renewable Energy and Power Quality Journal, 0, , 698-703.	0.2	3
71	Damage diagnosis for offshore ï¬xed wind turbines. Renewable Energy and Power Quality Journal, 0, 17, 366-370.	0.2	1
72	Computed-Torque-Plus-Compensation-Plus-Chattering Controller of Robot Manipulators. , 0, , .		1

 $Computed \mbox{-} Torque \mbox{-} Plus \mbox{-} Compensation \mbox{-} Plus \mbox{-} Chattering \mbox{-} Controller \mbox{ of Robot Manipulators.}, 0, , .$ 72

#	Article	IF	CITATIONS
73	An Effective Wind Speed Observer for Pitch Fault Detection in Wind Turbines. Renewable Energy and Power Quality Journal, 0, , 166-170.	0.2	1
74	Super-twisting controllers for wind turbines. Renewable Energy and Power Quality Journal, 0, , 684-689.	0.2	0
75	Variable structure strategy to avoid torque control saturation of a wind turbine in the presence of faults. Renewable Energy and Power Quality Journal, 0, , 222-228.	0.2	0
76	Meshfree Methods: Are they going to be used in the Next Decade?. Computational Science, Engineering and Technology Series, 0, , 23-49.	0.2	0