Jesper Qualmann Svejstrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557957/publications.pdf

Version: 2024-02-01

115 papers 10,454 citations

28274 55 h-index 99 g-index

122 all docs $\begin{array}{c} 122 \\ \\ \text{docs citations} \end{array}$

times ranked

122

8981 citing authors

#	Article	IF	CITATIONS
1	Elongator, a Multisubunit Component of a Novel RNA Polymerase II Holoenzyme for Transcriptional Elongation. Molecular Cell, 1999, 3, 109-118.	9.7	713
2	Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levelsin vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3517-3522.	7.1	503
3	A Novel Histone Acetyltransferase Is an Integral Subunit of Elongating RNA Polymerase II Holoenzyme. Molecular Cell, 1999, 4, 123-128.	9.7	432
4	Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell, 1994, 79, 1103-1109.	28.9	419
5	Mechanisms of transcription-coupled DNA repair. Nature Reviews Molecular Cell Biology, 2002, 3, 21-29.	37.0	349
6	Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell, 1993, 75, 1379-1387.	28.9	337
7	Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome. Cell, 1995, 80, 21-28.	28.9	271
8	Purification and Characterization of the Human Elongator Complex. Journal of Biological Chemistry, 2002, 277, 3047-3052.	3.4	230
9	A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature, 2002, 415, 929-933.	27.8	205
10	Multiple Mechanisms Confining RNA Polymerase II Ubiquitylation to Polymerases Undergoing Transcriptional Arrest. Cell, 2005, 121, 913-923.	28.9	198
11	Transcription Impairment and Cell Migration Defects in Elongator-Depleted Cells: Implication for Familial Dysautonomia. Molecular Cell, 2006, 22, 521-531.	9.7	191
12	Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature, 1994, 368, 74-76.	27.8	176
13	Damage-Induced Ubiquitylation of Human RNA Polymerase II by the Ubiquitin Ligase Nedd4, but Not Cockayne Syndrome Proteins or BRCA1. Molecular Cell, 2007, 28, 386-397.	9.7	175
14	RECQL5 Controls Transcript Elongation and Suppresses Genome Instability Associated with Transcription Stress. Cell, 2014, 157, 1037-1049.	28.9	162
15	Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Reports, 2016, 15, 1597-1610.	6.4	162
16	Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO Journal, 2004, 23, 4243-4252.	7.8	160
17	Transcript Elongation by RNA Polymerase II. Annual Review of Biochemistry, 2010, 79, 271-293.	11.1	160
18	UV Irradiation Induces a Non-coding RNA that Functionally Opposes the Protein Encoded by the Same Gene. Cell, 2017, 168, 843-855.e13.	28.9	157

#	Article	IF	CITATIONS
19	RNA Polymerase II Elongator Holoenzyme Is Composed of Two Discrete Subcomplexes. Journal of Biological Chemistry, 2001, 276, 32743-32749.	3.4	153
20	Triptolide is an inhibitor of RNA polymerase I and II–dependent transcription leading predominantly to down-regulation of short-lived mRNA. Molecular Cancer Therapeutics, 2009, 8, 2780-2790.	4.1	152
21	New technique for uncoupling the cleavage and religation reactions of Eukaryotic Topoisomerase I Journal of Molecular Biology, 1991, 222, 669-678.	4.2	150
22	A role for noncoding transcription in activation of the yeast PHO5 gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8011-8016.	7.1	150
23	RNA Polymerase II Collision Interrupts Convergent Transcription. Molecular Cell, 2012, 48, 365-374.	9.7	149
24	Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20705-20710.	7.1	144
25	Elongator complex: how many roles does it play?. Current Opinion in Cell Biology, 2007, 19, 331-336.	5.4	142
26	Ubiquitylation and degradation of elongating RNA polymerase II: The last resort. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 151-157.	1.9	141
27	Elongator Interactions with Nascent mRNA Revealed by RNA Immunoprecipitation. Molecular Cell, 2004, 14, 457-464.	9.7	125
28	A RECQ5–RNA polymerase II association identified by targeted proteomic analysis of human chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8580-8584.	7.1	123
29	Causes and consequences of RNA polymerase II stalling during transcript elongation. Nature Reviews Molecular Cell Biology, 2021, 22, 3-21.	37.0	119
30	The ASC-1 Complex Disassembles Collided Ribosomes. Molecular Cell, 2020, 79, 603-614.e8.	9.7	117
31	Evidence that Transcript Cleavage Is Essential for RNA Polymerase II Transcription and Cell Viability. Molecular Cell, 2010, 38, 202-210.	9.7	116
32	Regulation of the RNAPII Pool Is Integral to the DNA Damage Response. Cell, 2020, 180, 1245-1261.e21.	28.9	116
33	Rescue of arrested RNA polymerase II complexes. Journal of Cell Science, 2003, 116, 447-451.	2.0	114
34	Mutation of cancer driver <i>MLL2</i> results in transcription stress and genome instability. Genes and Development, 2016, 30, 408-420.	5.9	112
35	Transcriptional Inhibition of Genes with Severe Histone H3 Hypoacetylation in the Coding Region. Molecular Cell, 2002, 10, 925-933.	9.7	109
36	A Ubiquitin-Binding Domain in Cockayne Syndrome B Required for Transcription-Coupled Nucleotide Excision Repair. Molecular Cell, 2010, 38, 637-648.	9.7	109

#	Article	IF	CITATIONS
37	Mechanistic Interpretation of Promoter-Proximal Peaks and RNAPII Density Maps. Cell, 2013, 154, 713-715.	28.9	109
38	The Cellular Response to Transcription-Blocking DNA Damage. Trends in Biochemical Sciences, 2018, 43, 327-341.	7.5	107
39	Hyperphosphorylation of the C-terminal Repeat Domain of RNA Polymerase II Facilitates Dissociation of Its Complex with Mediator. Journal of Biological Chemistry, 2007, 282, 14113-14120.	3.4	99
40	DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation. Nature, 2012, 484, 386-389.	27.8	99
41	Contending with transcriptional arrest during RNAPII transcript elongation. Trends in Biochemical Sciences, 2007, 32, 165-171.	7.5	94
42	SCAF4 and SCAF8, mRNA Anti-Terminator Proteins. Cell, 2019, 177, 1797-1813.e18.	28.9	85
43	RNA Immunoprecipitation for Determining RNAâ€Protein Associations In Vivo. Current Protocols in Molecular Biology, 2006, 75, Unit 27.4.	2.9	84
44	Stability, Flexibility, and Dynamic Interactions of Colliding RNA Polymerase II Elongation Complexes. Molecular Cell, 2009, 35, 191-205.	9.7	83
45	Camptothecin inhibits both the cleavage and religation reactions of eukaryotic DNA topoisomerase I. Journal of Molecular Biology, 1992, 228, 1025-1030.	4.2	81
46	Isolation and mass spectrometry of transcription factor complexes. Methods, 2002, 26, 260-269.	3.8	81
47	Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. Molecular Cell, 2019, 76, 57-69.e9.	9.7	79
48	CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Science Advances, 2020, 6, .	10.3	79
49	The RNA polymerase II transcription cycle: cycling through chromatin. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1677, 64-73.	2.4	78
50	Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14454-14459.	7.1	78
51	Vps75, A New Yeast Member of the NAP Histone Chaperone Family. Journal of Biological Chemistry, 2007, 282, 12358-12362.	3.4	75
52	Genes For Tfb2, Tfb3, and Tfb4 Subunits of Yeast Transcription/Repair Factor IIH. Journal of Biological Chemistry, 1997, 272, 19319-19327.	3.4	72
53	Proteasome-Mediated Processing of Def1, a Critical Step in the Cellular Response to Transcription Stress. Cell, 2013, 154, 983-995.	28.9	69
54	Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD. Cell, 2007, 129, 57-68.	28.9	65

#	Article	IF	Citations
55	The interface between transcription and mechanisms maintaining genome integrity. Trends in Biochemical Sciences, 2010, 35, 333-338.	7. 5	62
56	The Elp2 Subunit of Elongator and Elongating RNA Polymerase II Holoenzyme Is a WD40 Repeat Protein. Journal of Biological Chemistry, 2000, 275, 12896-12899.	3.4	58
57	Reversal of RNA Polymerase II Ubiquitylation by the Ubiquitin Protease Ubp3. Molecular Cell, 2008, 30, 498-506.	9.7	56
58	RNA Immunoprecipitation to Determine RNA-Protein Associations In Vivo. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5234.	0.3	54
59	An Iron-Sulfur Cluster Domain in Elp3 Important for the Structural Integrity of Elongator. Journal of Biological Chemistry, 2009, 284, 141-149.	3.4	52
60	Direct Inhibition of RNA Polymerase II Transcription by RECQL5. Journal of Biological Chemistry, 2009, 284, 23197-23203.	3.4	52
61	Translation stress and collided ribosomes are co-activators of cGAS. Molecular Cell, 2021, 81, 2808-2822.e10.	9.7	52
62	Role of Elongator Subunit Elp3 in <i>Drosophila melanogaster</i> Larval Development and Immunity. Genetics, 2011, 187, 1067-1075.	2.9	51
63	Involvement of yeast carboxy-terminal domain kinase I (CTDK-I) in transcription elongation in vivo. Gene, 2001, 267, 31-36.	2.2	50
64	DERP6 (ELP5) and C3ORF75 (ELP6) Regulate Tumorigenicity and Migration of Melanoma Cells as Subunits of Elongator. Journal of Biological Chemistry, 2012, 287, 32535-32545.	3.4	47
65	DNA Damage-induced Def1-RNA Polymerase II Interaction and Def1 Requirement for Polymerase Ubiquitylation in Vitro. Journal of Biological Chemistry, 2004, 279, 29875-29878.	3.4	46
66	Using TTchem-seq for profiling nascent transcription and measuring transcript elongation. Nature Protocols, 2020, 15, 604-627.	12.0	46
67	GTP-dependent Binding and Nuclear Transport of RNA Polymerase II by Npa3 Protein. Journal of Biological Chemistry, 2011, 286, 35553-35561.	3.4	45
68	DDI2 Is a Ubiquitin-Directed Endoprotease Responsible for Cleavage of Transcription Factor NRF1. Molecular Cell, 2020, 79, 332-341.e7.	9.7	45
69	Characterization of an altered DNA catalysis of a camptothecin-resistant eukaryotic topoisomerase I. Nucleic Acids Research, 1993, 21, 593-600.	14.5	41
70	Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nature Cell Biology, 2021, 23, 608-619.	10.3	41
71	Chromatin elongation factors. Current Opinion in Genetics and Development, 2002, 12, 156-161.	3.3	40
72	Spreading of Sir3 protein in cells with severe histone H3 hypoacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7551-7556.	7.1	38

#	Article	IF	Citations
73	Subunits of Yeast RNA Polymerase II Transcription Factor TFIIH Encoded by the CCL1 Gene. Journal of Biological Chemistry, 1996, 271, 643-645.	3.4	37
74	Interaction of Fcp1 Phosphatase with Elongating RNA Polymerase II Holoenzyme, Enzymatic Mechanism of Action, and Genetic Interaction with Elongator. Journal of Biological Chemistry, 2005, 280, 4299-4306.	3.4	36
75	TRANSCRIPTION: Histones Face the FACT. Science, 2003, 301, 1053-1055.	12.6	34
76	Molecular Architecture, Structure-Function Relationship, and Importance of the Elp3 Subunit for the RNA Binding of Holo-Elongator. Journal of Biological Chemistry, 2004, 279, 32087-32092.	3.4	34
77	Physical and Functional Interaction between Elongator and the Chromatin-associated Kti12 Protein. Journal of Biological Chemistry, 2005, 280, 19454-19460.	3.4	31
78	A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair. Nucleic Acids Research, 2016, 44, 5246-5255.	14.5	30
79	The DNA Binding, Cleavage, and Religation Reactions of Eukaryotic Topoisomerases I and II. Advances in Pharmacology, 1994, 29A, 83-101.	2.0	29
80	Purification and Characterization of Human Topoisomerase I Mutants. FEBS Journal, 1996, 236, 389-394.	0.2	29
81	Transcription Repair Coupling Factor. Molecular Cell, 2002, 9, 1151-1152.	9.7	29
82	The NC2 alpha and beta subunits play different roles in vivo. Genes and Development, 2002, 16, 3265-3276.	5.9	27
83	MultiDsk: A Ubiquitin-Specific Affinity Resin. PLoS ONE, 2012, 7, e46398.	2.5	27
84	Heat shock induces premature transcript termination and reconfigures the human transcriptome. Molecular Cell, 2022, 82, 1573-1588.e10.	9.7	27
85	An Rtt109-Independent Role for Vps75 in Transcription-Associated Nucleosome Dynamics. Molecular and Cellular Biology, 2009, 29, 4220-4234.	2.3	26
86	RECQL5 helicase: Connections to DNA recombination and RNA polymerase II transcription. DNA Repair, 2010, 9, 345-353.	2.8	25
87	A Ubiquitin-Binding Domain that Binds a Structural Fold Distinct from that of Ubiquitin. Structure, 2019, 27, 1316-1325.e6.	3.3	23
88	Studying RNA–Protein Interactions In Vivo By RNA Immunoprecipitation. Methods in Molecular Biology, 2011, 791, 253-264.	0.9	22
89	Genome-wide reconstitution of chromatin transactions reveals that RSC preferentially disrupts H2AZ-containing nucleosomes. Genome Research, 2019, 29, 988-998.	5.5	21
90	A Role for Checkpoint Kinase-Dependent Rad26 Phosphorylation in Transcription-Coupled DNA Repair in <i>Saccharomyces cerevisiae</i> in <i>Saccharomyces cerevisiae</i>	2.3	18

#	Article	IF	CITATIONS
91	Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation. Cell Reports, 2016, 14, 2554-2561.	6.4	18
92	Analysis of RNA polymerase II ubiquitylation and proteasomal degradation. Methods, 2019, 159-160, 146-156.	3.8	17
93	In Vitro Reconstitution of PHO5 Promoter Chromatin Remodeling Points to a Role for Activator-Nucleosome Competition In Vivo. Molecular and Cellular Biology, 2010, 30, 4060-4076.	2.3	16
94	Cockayne syndrome B protein regulates recruitment of the Elongin A ubiquitin ligase to sites of DNA damage. Journal of Biological Chemistry, 2017, 292, 6431-6437.	3.4	16
95	Incision of a 1,3-intrastrand d(GpTpG)-cisplatin adduct by nucleotide excision repair proteins from yeast. DNA Repair, 2002, 1, $731-741$.	2.8	15
96	Reprogramming chromatin. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 464-482.	5.2	14
97	Interacting partners of the Tfb2 subunit from yeast TFIIH. DNA Repair, 2010, 9, 33-39.	2.8	13
98	Evidence That STK19 Is Not an NRAS-dependent Melanoma Driver. Cell, 2020, 181, 1395-1405.e11.	28.9	13
99	Transcription-coupled repair and the transcriptional response to UV-Irradiation. DNA Repair, 2021, 107, 103208.	2.8	13
100	Synovial Sarcoma Mechanisms: A Series of Unfortunate Events. Cell, 2013, 153, 11-12.	28.9	12
101	Keeping RNA and DNA Apart during Transcription. Molecular Cell, 2003, 12, 538-539.	9.7	11
102	Transcription: another mark in the tail. EMBO Journal, 2012, 31, 2753-2754.	7.8	8
103	Recent Insights on DNA Repair: The Mechanism of Damaged Nucleotide Excision in Eukaryotes and Its Relationship to Other Cellular Processes. Annals of the New York Academy of Sciences, 1994, 726, 281-291.	3.8	7
104	Purification of Elongating RNA Polymerase II and Other Factors from Yeast Chromatin. Methods in Enzymology, 2003, 371, 491-498.	1.0	7
105	Retention of the Native Epigenome in Purified Mammalian Chromatin. PLoS ONE, 2015, 10, e0133246.	2.5	7
106	Developmental regulation of neuronal gene expression by Elongator complex protein 1 dosage. Journal of Genetics and Genomics, 2022, 49, 654-665.	3.9	6
107	UBAP2/UBAP2L regulate UV-induced ubiquitylation of RNA polymerase II and are the human orthologues of yeast Def1. DNA Repair, 2022, 115, 103343.	2.8	6
108	RNA Polymerase II: A "Nobel―Enzyme Demystified. Molecular Cell, 2006, 24, 637-642.	9.7	3

#	Article	IF	CITATIONS
109	Transcription-coupled DNA repair without the transcription-coupling repair factor. Trends in Biochemical Sciences, 2001, 26, 151.	7.5	2
110	Hereditary dysautonomias: current knowledge and collaborations for the future. Clinical Autonomic Research, 2003, 13, 180-195.	2.5	2
111	An Assay for Studying Ubiquitylation of RNA Polymerase II and Other Proteins in Crude Yeast Extracts. Methods in Enzymology, 2006, 408, 264-273.	1.0	1
112	Watch Out for Those Terrible Twos! Dinucleotide Accumulation Dysregulates Mitochondrial Transcription. Molecular Cell, 2019, 76, 696-698.	9.7	1
113	Annotation matters: validating the discovery of cancer drivers. Molecular and Cellular Oncology, 2020, 7, 1806679.	0.7	1
114	Nucleotide excision repair in the yeast Saccharomyces cerevisiae: its relationship to specialized mitotic recombination and RNA polymerase II basal transcription., 1995,, 59-64.		1
115	Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. SSRN Electronic Journal, 0, , .	0.4	O