Juan Manuel Manso VillalaÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557910/publications.pdf

Version: 2024-02-01

38 papers

1,907 citations

20 h-index 36 g-index

39 all docs 39 docs citations

39 times ranked 1072 citing authors

#	Article	IF	CITATIONS
1	Validation of slag-binder fiber-reinforced self-compacting concrete with slag aggregate under field conditions: Durability and real strength development. Construction and Building Materials, 2022, 320, 126280.	7.2	24
2	Balancing sustainability, workability, and hardened behavior in the mix design of self-compacting concrete., 2022,, 333-358.		1
3	¿Por qué el efecto del árido de hormigón reciclado en la resistencia a compresión del hormigón autocompactante no es homogéneo? Una revisión bibliográfica. Informes De La Construccion, 2022, 74, e435.	0.3	1
4	Shrinkage prediction of recycled aggregate structural concrete with alternative binders through partial correction coefficients. Cement and Concrete Composites, 2022, 129, 104506.	10.7	22
5	Deformational behavior of self-compacting concrete containing recycled aggregate, slag cement and green powders under compression and bending: Description and prediction adjustment. Journal of Building Engineering, 2022, 54, 104611.	3.4	7
6	Residual stresses in cold-formed steel members: Review of measurement methods and numerical modelling. Thin-Walled Structures, 2021, 159, 107335.	5. 3	26
7	Transport mechanisms as indicators of the durability of precast recycled concrete. Construction and Building Materials, 2021, 269, 121263.	7.2	16
8	Assessment of longitudinal and transversal plastic behavior of recycled aggregate self-compacting concrete: A two-way study. Construction and Building Materials, 2021, 292, 123426.	7.2	28
9	Effect of the maturity of recycled aggregates on the mechanical properties and autogenous and drying shrinkage of high-performance concrete. Construction and Building Materials, 2021, 299, 124001.	7.2	27
10	Bituminous base courses for flexible pavements with steel slags. Transportation Research Procedia, 2021, 58, 83-89.	1.5	1
11	The study of properties and behavior of self compacting concrete containing Electric Arc Furnace Slag (EAFS) as aggregate. Ain Shams Engineering Journal, 2020, 11, 231-243.	6.1	45
12	Effect of fine recycled concrete aggregate on the mechanical behavior of self-compacting concrete. Construction and Building Materials, 2020, 263, 120671.	7.2	71
13	Influence of Recycled Precast Concrete Aggregate on Durability of Concrete's Physical Processes. Applied Sciences (Switzerland), 2020, 10, 7348.	2.5	11
14	Student Perceptions of Formative Assessment and Cooperative Work on a Technical Engineering Course. Sustainability, 2020, 12, 4569.	3.2	14
15	Self-compacting concrete manufactured with recycled concrete aggregate: An overview. Journal of Cleaner Production, 2020, 262, 121362.	9.3	111
16	Influence of the Production Temperature on the Optimization Process of Asphalt Mixes Prepared with Steel Slag Aggregates Only. Lecture Notes in Civil Engineering, 2020, , 214-223.	0.4	3
17	Application of the hole-drilling method for the evaluation of residual stresses near rounded ends. Journal of Strain Analysis for Engineering Design, 2019, 54, 424-430.	1.8	3
18	Analysis of the Influence of the Thickness and the Hole Radius on the Calibration Coefficients in the Hole-Drilling Method for the Determination of Non-uniform Residual Stresses. Experimental Mechanics, 2019, 59, 79-94.	2.0	10

#	Article	IF	Citations
19	The influence of recycled aggregates from precast elements on the mechanical properties of structural self-compacting concrete. Construction and Building Materials, 2018, 182, 309-323.	7.2	93
20	EAF slag in asphalt mixes: A brief review of its possible re-use. Resources, Conservation and Recycling, 2017, 120, 176-185.	10.8	144
21	Performance of steel-making slag concrete reinforced with fibers. MATEC Web of Conferences, 2017, 120, 04001.	0.2	4
22	Fiber Reinforced Concrete Manufactured with Electric Arc Furnace Slag. Minerals, Metals and Materials Series, 2017, , 205-213.	0.4	0
23	Central lessons from the historical analysis of 24 reinforced-concrete structures in northern Spain. Journal of Cultural Heritage, 2016, 20, 649-659.	3.3	19
24	Ladle furnace slag in asphalt mixes. Construction and Building Materials, 2016, 122, 488-495.	7.2	63
25	Electric arc furnace slag and its use in hydraulic concrete. Construction and Building Materials, 2015, 90, 68-79.	7.2	155
26	The long-term accelerated expansion of various ladle-furnace basic slags and their soil-stabilization applications. Construction and Building Materials, 2014, 68, 455-464.	7.2	84
27	Durability studies on steelmaking slag concretes. Materials & Design, 2014, 63, 168-176.	5.1	95
28	Recommendations on imperfections in the design of plated structural elements of bridges. Journal of Constructional Steel Research, 2013, 86, 183-194.	3.9	4
29	The use of ladle furnace slag in soil stabilization. Construction and Building Materials, 2013, 40, 126-134.	7.2	127
30	Métodos para la limpieza fÃsica, quÃmica y biológica de las fábricas de piedra de monumentos históricas. El caso de San Lorenzo del Real de Burgos. Informes De La Construccion, 2013, 65, 367-380.	0.3	2
31	Los "sentidos―estéticos del patrimonio: la construcción metálica antes del desarrollo de la soldadura. Ejemplos en Burgos y Palencia (España). Informes De La Construccion, 2012, 64, 457-470.	0.3	1
32	The durability of masonry mortars made with ladle furnace slag. Construction and Building Materials, 2011, 25, 3508-3519.	7.2	49
33	Viscoelastic behavior of a polyester resin concrete reinforced with nonmetallic bars under bending loads. Polymer Composites, 2009, 30, 791-804.	4.6	2
34	Strength and workability of masonry mortars manufactured with ladle furnace slag. Resources, Conservation and Recycling, 2009, 53, 645-651.	10.8	84
35	Fiber-reinforced polymer bars embedded in a resin concrete: Study of both materials and their bond behavior. Polymer Composites, 2006, 27, 315-322.	4.6	20
36	Durability of concrete made with EAF slag as aggregate. Cement and Concrete Composites, 2006, 28, 528-534.	10.7	259

#	ARTICLE	IF	CITATIONS
37	Ladle Furnace Slag in Construction. Journal of Materials in Civil Engineering, 2005, 17, 513-518.	2.9	126
38	Electric Arc Furnace Slag in Concrete. Journal of Materials in Civil Engineering, 2004, 16, 639-645.	2.9	155