## **Victor Barocas**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557778/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction,<br>Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance. Journal of<br>Biomechanical Engineering, 1997, 119, 137-145.    | 0.6 | 303       |
| 2  | Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network<br>Behavior. Journal of Biomechanical Engineering, 2006, 128, 259-270.                                                                           | 0.6 | 189       |
| 3  | Rheology of reconstituted type I collagen gel in confined compression. Journal of Rheology, 1997, 41,<br>971-993.                                                                                                                                | 1.3 | 162       |
| 4  | Volume-averaging theory for the study of the mechanics of collagen networks. Computer Methods in<br>Applied Mechanics and Engineering, 2007, 196, 2981-2990.                                                                                     | 3.4 | 161       |
| 5  | Engineered Alignment in Media Equivalents: Magnetic Prealignment and Mandrel Compaction. Journal of Biomechanical Engineering, 1998, 120, 660-666.                                                                                               | 0.6 | 159       |
| 6  | The Fibroblast-Populated Collagen Microsphere Assay of Cell Traction Force—Part 2: Measurement of the Cell Traction Parameter. Journal of Biomechanical Engineering, 1995, 117, 161-170.                                                         | 0.6 | 157       |
| 7  | Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17675-17680. | 3.3 | 135       |
| 8  | Mechanism Governing Microparticle Morphology during Precipitation by a Compressed Antisolvent:Â<br>Atomization vs Nucleation and Growth. Journal of Physical Chemistry B, 2000, 104, 2725-2735.                                                  | 1.2 | 133       |
| 9  | Microstructural Mechanics of Collagen Gels in Confined Compression: Poroelasticity,<br>Viscoelasticity, and Collapse. Journal of Biomechanical Engineering, 2004, 126, 152-166.                                                                  | 0.6 | 132       |
| 10 | Effects of Freezing and Cryopreservation on the Mechanical Properties of Arteries. Annals of Biomedical Engineering, 2006, 34, 823-832.                                                                                                          | 1.3 | 124       |
| 11 | Computational predictions of the tensile properties of electrospun fibre meshes: Effect of fibre<br>diameter and fibre orientation. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1,<br>326-335.                             | 1.5 | 122       |
| 12 | Permeability and diffusion in vitreous humor: implications for drug delivery. Pharmaceutical<br>Research, 2000, 17, 664-669.                                                                                                                     | 1.7 | 120       |
| 13 | Functional Tissue-Engineered Valves from Cell-Remodeled Fibrin with Commissural Alignment of<br>Cell-Produced Collagen. Tissue Engineering - Part A, 2008, 14, 83-95.                                                                            | 1.6 | 108       |
| 14 | Comparison of 2D fiber network orientation measurement methods. Journal of Biomedical Materials<br>Research - Part A, 2009, 88A, 322-331.                                                                                                        | 2.1 | 105       |
| 15 | Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharmaceutical Research, 2003, 20, 96-102.                                                                                          | 1.7 | 104       |
| 16 | Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls. Journal of Biomechanical Engineering, 2007, 129, 611-618.                                                                                            | 0.6 | 101       |
| 17 | Temporal Variations in Cell Migration and Traction during Fibroblast-Mediated Gel Compaction.<br>Biophysical Journal, 2003, 84, 4102-4114.                                                                                                       | 0.2 | 100       |
| 18 | Modeling Passive Mechanical Interaction Between Aqueous Humor and Iris. Journal of Biomechanical Engineering, 2001, 123, 540-547.                                                                                                                | 0.6 | 97        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Boussinesq Model of Natural Convection in the Human Eye and the Formation of Krukenberg's<br>Spindle. Annals of Biomedical Engineering, 2002, 30, 392-401.                                                       | 1.3 | 94        |
| 20 | Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel<br>Interactions With Increasing Collagen Content. Journal of Biomechanical Engineering, 2012, 134,<br>011004.           | 0.6 | 86        |
| 21 | Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics. Journal of<br>Biomechanical Engineering, 2007, 129, 137-147.                                                                   | 0.6 | 85        |
| 22 | Permeability calculations in three-dimensional isotropic and oriented fiber networks. Physics of Fluids, 2008, 20, 123601.                                                                                         | 1.6 | 85        |
| 23 | Biomechanical and Microstructural Characteristics of a Collagen Film-Based Corneal Stroma<br>Equivalent. Tissue Engineering, 2006, 12, 1565-1575.                                                                  | 4.9 | 83        |
| 24 | Confined Compression of a Tissue-Equivalent: Collagen Fibril and Cell Alignment in Response to Anisotropic Strain. Journal of Biomechanical Engineering, 2002, 124, 568-575.                                       | 0.6 | 81        |
| 25 | Using Channel Depth To Isolate and Control Flow in a Micro Free-Flow Electrophoresis Device.<br>Analytical Chemistry, 2006, 78, 5369-5374.                                                                         | 3.2 | 81        |
| 26 | Initial Fiber Alignment Pattern Alters Extracellular Matrix Synthesis in Fibroblast-Populated Fibrin Gel<br>Cruciforms and Correlates with Predicted Tension. Annals of Biomedical Engineering, 2011, 39, 714-729. | 1.3 | 70        |
| 27 | Computer Modeling of Drug Delivery to the Posterior Eye: Effect of Active Transport and Loss to Choroidal Blood Flow. Pharmaceutical Research, 2008, 25, 2685-2696.                                                | 1.7 | 68        |
| 28 | Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison with<br>Collagen-Agarose Co-gels. Annals of Biomedical Engineering, 2012, 40, 2111-2121.                                          | 1.3 | 61        |
| 29 | Pericellular Conditions Regulate Extent of Cell-Mediated Compaction ofÂCollagen Gels. Biophysical<br>Journal, 2010, 99, 19-28.                                                                                     | 0.2 | 60        |
| 30 | Coupled Macroscopic and Microscopic Scale Modeling of Fibrillar Tissues and Tissue Equivalents.<br>Journal of Biomechanical Engineering, 2001, 123, 362-369.                                                       | 0.6 | 59        |
| 31 | Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A<br>Collagen-Agarose Co-Gel Model. Annals of Biomedical Engineering, 2011, 39, 1891-1903.                                     | 1.3 | 59        |
| 32 | Uniaxial and biaxial mechanical behavior of human amnion. Journal of Materials Research, 2005, 20,<br>2902-2909.                                                                                                   | 1.2 | 57        |
| 33 | Mechanical characterization of the bovine iris. Journal of Biomechanics, 1999, 32, 999-1003.                                                                                                                       | 0.9 | 55        |
| 34 | Intrinsic kinetics for rapid decomposition of methane in an aerosol flow reactor. International<br>Journal of Hydrogen Energy, 2002, 27, 377-386.                                                                  | 3.8 | 55        |
| 35 | A closed-form structural model of planar fibrous tissue mechanics. Journal of Biomechanics, 2009, 42, 1424-1428.                                                                                                   | 0.9 | 54        |
| 36 | Freeze–Thaw Induced Biomechanical Changes in Arteries: Role of Collagen Matrix and Smooth Muscle<br>Cells. Annals of Biomedical Engineering, 2010, 38, 694-706.                                                    | 1.3 | 54        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Swelling of Collagen-Hyaluronic Acid Co-Gels: An In Vitro Residual Stress Model. Annals of<br>Biomedical Engineering, 2016, 44, 2984-2993.                                                                                           | 1.3 | 53        |
| 38 | A Finite Element Solution for the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The<br>Effect of Contact Guidance on Isometric Cell Traction Measurement. Journal of Biomechanical<br>Engineering, 1997, 119, 261-268. | 0.6 | 50        |
| 39 | Mechanical and Cellular Changes During Compaction of a Collagen-Sponge-Based Corneal Stromal Equivalent. Annals of Biomedical Engineering, 2004, 32, 274-283.                                                                        | 1.3 | 50        |
| 40 | Mechanical changes in the rat right ventricle with decellularization. Journal of Biomechanics, 2012, 45, 842-849.                                                                                                                    | 0.9 | 50        |
| 41 | Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical<br>Intervention. Annals of Biomedical Engineering, 2016, 44, 2642-2660.                                                            | 1.3 | 50        |
| 42 | Microstructural and mechanical differences between digested collagen–fibrin co-gels and pure collagen and fibrin gels. Acta Biomaterialia, 2012, 8, 4031-4042.                                                                       | 4.1 | 49        |
| 43 | Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant-rate fiber growth. Mechanics of Materials, 2012, 44, 72-82.                                                                 | 1.7 | 49        |
| 44 | Image-based biomechanics of collagen-based tissue equivalents. IEEE Engineering in Medicine and<br>Biology Magazine, 2009, 28, 10-18.                                                                                                | 1.1 | 48        |
| 45 | Identification of Regional Mechanical Anisotropy in Soft Tissue Analogs. Journal of Biomechanical Engineering, 2011, 133, 091011.                                                                                                    | 0.6 | 47        |
| 46 | Cross-linked fiber network embedded in an elastic matrix. Soft Matter, 2013, 9, 6398.                                                                                                                                                | 1.2 | 44        |
| 47 | Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage. Journal of<br>Biomechanical Engineering, 2012, 134, 091005.                                                                                         | 0.6 | 43        |
| 48 | A Coupled Fiber-Matrix Model Demonstrates Highly Inhomogeneous Microstructural Interactions in<br>Soft Tissues Under Tensile Load. Journal of Biomechanical Engineering, 2013, 135, 011008.                                          | 0.6 | 43        |
| 49 | Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural<br>Model. Journal of Biomechanical Engineering, 2017, 139, .                                                                     | 0.6 | 43        |
| 50 | Dicer1 Deficiency in the Idiopathic Pulmonary Fibrosis Fibroblastic Focus Promotes Fibrosis by<br>Suppressing MicroRNA Biogenesis. American Journal of Respiratory and Critical Care Medicine, 2018,<br>198, 486-496.                | 2.5 | 42        |
| 51 | Planar Biaxial Mechanical Behavior of Bioartificial Tissues Possessing Prescribed Fiber Alignment.<br>Journal of Biomechanical Engineering, 2009, 131, 081006.                                                                       | 0.6 | 41        |
| 52 | Softening in random networks of non-identical beams. Journal of the Mechanics and Physics of Solids, 2016, 87, 38-50.                                                                                                                | 2.3 | 40        |
| 53 | Measurement of foam modulus via a vane rheometer. Journal of Rheology, 1998, 42, 871-889.                                                                                                                                            | 1.3 | 39        |
| 54 | Active Iris Mechanics and Pupillary Block: Steady-State Analysis and Comparison with Anatomical Risk<br>Factors. Annals of Biomedical Engineering, 2004, 32, 1276-1285.                                                              | 1.3 | 38        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Collagenâ€agarose coâ€gels as a model for collagen–matrix interaction in soft tissues subjected to<br>indentation. Journal of Biomedical Materials Research - Part A, 2011, 99A, 507-515.                              | 2.1 | 37        |
| 56 | Microscale Fiber Network Alignment Affects Macroscale Failure Behavior in Simulated Collagen<br>Tissue Analogs. Journal of Biomechanical Engineering, 2013, 135, 021026.                                               | 0.6 | 37        |
| 57 | Assessment of Wall Shear Stress Changes in Arteries and Veins of Arteriovenous<br>Polytetrafluoroethylene Grafts Using Magnetic Resonance Imaging. CardioVascular and<br>Interventional Radiology, 2006, 29, 624-629.  | 0.9 | 36        |
| 58 | Ex vivo porcine iris stiffening due to drug stimulation. Experimental Eye Research, 2009, 89, 456-461.                                                                                                                 | 1.2 | 35        |
| 59 | Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding<br>Matrices. Journal of Applied Mechanics, Transactions ASME, 2016, 83, 0410081-410087.                                    | 1.1 | 35        |
| 60 | Accommodation-induced changes in iris curvature. Experimental Eye Research, 2008, 86, 220-225.                                                                                                                         | 1.2 | 33        |
| 61 | The Modulus of Fibroblast-Populated Collagen Gels is not Determined by Final Collagen and Cell<br>Concentration: Experiments and an Inclusion-Based Model. Journal of Biomechanical Engineering,<br>2009, 131, 101014. | 0.6 | 31        |
| 62 | Contribution of Saccadic Motion to Intravitreal Drug Transport: Theoretical Analysis.<br>Pharmaceutical Research, 2011, 28, 1049-1064.                                                                                 | 1.7 | 31        |
| 63 | Anterior–posterior asymmetry in iris mechanics measured by indentation. Experimental Eye Research, 2011, 93, 475-481.                                                                                                  | 1.2 | 30        |
| 64 | A Multiscale Approach to Modeling the Passive Mechanical Contribution of Cells in Tissues. Journal of Biomechanical Engineering, 2013, 135, 71007.                                                                     | 0.6 | 30        |
| 65 | Three-dimensional simulation of anisotropic cell-driven collagen gel compaction. Biomechanics and<br>Modeling in Mechanobiology, 2008, 7, 53-62.                                                                       | 1.4 | 27        |
| 66 | Collagen Organization in Facet Capsular Ligaments Varies With Spinal Region and With Ligament<br>Deformation. Journal of Biomechanical Engineering, 2017, 139, .                                                       | 0.6 | 27        |
| 67 | Modeling and Characterization of a Valved Glaucoma Drainage Device With Implications for Enhanced Therapeutic Efficacy. IEEE Transactions on Biomedical Engineering, 2005, 52, 948-951.                                | 2.5 | 26        |
| 68 | Sustained transscleral drug delivery. Expert Opinion on Drug Delivery, 2008, 5, 1-10.                                                                                                                                  | 2.4 | 26        |
| 69 | Generalized Anisotropic Inverse Mechanics for Soft Tissues. Journal of Biomechanical Engineering, 2010, 132, 081006.                                                                                                   | 0.6 | 26        |
| 70 | Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the<br>human lumbar facet capsular ligament. Biomechanics and Modeling in Mechanobiology, 2017, 16,<br>1425-1438.       | 1.4 | 26        |
| 71 | Isotropic Failure Criteria Are Not Appropriate for Anisotropic Fibrous Biological Tissues. Journal of Biomechanical Engineering, 2017, 139, .                                                                          | 0.6 | 25        |
| 72 | A Cryoinjury Model Using Engineered Tissue Equivalents for Cryosurgical Applications. Annals of Biomedical Engineering, 2005, 33, 972-982.                                                                             | 1.3 | 24        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Multiscale Mechanical Model of the Pacinian Corpuscle Shows Depth and Anisotropy Contribute to<br>the Receptor's Characteristic Response to Indentation. PLoS Computational Biology, 2015, 11, e1004370.            | 1.5 | 24        |
| 74 | Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations. Journal of the Royal Society Interface, 2017, 14, 20170326.          | 1.5 | 24        |
| 75 | Computational evaluation of the role of accommodation in pigmentary glaucoma. Investigative Ophthalmology and Visual Science, 2002, 43, 700-8.                                                                      | 3.3 | 24        |
| 76 | Mechanics and kinematics of soft tissue under indentation are determined by the degree of initial collagen fiber alignment. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 25-35.            | 1.5 | 23        |
| 77 | Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 127-136.                            | 1.5 | 23        |
| 78 | The role of the facet capsular ligament in providing spinal stability. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 712-721.                                                              | 0.9 | 20        |
| 79 | Cell–matrix interaction during strain-dependent remodelling of simulated collagen networks.<br>Interface Focus, 2016, 6, 20150069.                                                                                  | 1.5 | 19        |
| 80 | A multiphysics model of the Pacinian corpuscle. Integrative Biology (United Kingdom), 2016, 8, 1111-1125.                                                                                                           | 0.6 | 19        |
| 81 | Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension. Acta<br>Biomaterialia, 2019, 87, 245-255.                                                                              | 4.1 | 19        |
| 82 | Microstructure-Based, Multiscale Modeling for the Mechanical Behavior of Hydrated Fiber Networks.<br>Multiscale Modeling and Simulation, 2008, 7, 22-43.                                                            | 0.6 | 18        |
| 83 | Increased iris–lens contact following spontaneous blinking: Mathematical modeling. Journal of<br>Biomechanics, 2012, 45, 2293-2296.                                                                                 | 0.9 | 18        |
| 84 | Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function. Journal of<br>Biomechanical Engineering, 2017, 139, .                                                                     | 0.6 | 17        |
| 85 | Computer simulation of lumbar flexion shows shear of the facet capsular ligament. Spine Journal, 2017, 17, 109-119.                                                                                                 | 0.6 | 17        |
| 86 | Mechanical response of wild-type and Alport murine lens capsules during osmotic swelling.<br>Experimental Eye Research, 2013, 113, 87-91.                                                                           | 1.2 | 15        |
| 87 | Multiscale mechanics of the cervical facet capsular ligament, with particular emphasis on anomalous fiber realignment prior to tissue failure. Biomechanics and Modeling in Mechanobiology, 2018, 17, 133-145.      | 1.4 | 15        |
| 88 | COMPUTATIONAL SIMULATION OF ALTITUDE CHANGE-INDUCED INTRAOCULAR PRESSURE ALTERATION IN PATIENTS WITH INTRAVITREAL GAS BUBBLES. Retina, 2011, 31, 1656-1663.                                                         | 1.0 | 14        |
| 89 | A finite-element model of mechanosensation by a Pacinian corpuscle cluster in human skin.<br>Biomechanics and Modeling in Mechanobiology, 2018, 17, 1053-1067.                                                      | 1.4 | 14        |
| 90 | Ex Vivo Mechanical Tests and Multiscale Computational Modeling Highlight the Importance of<br>Intramural Shear Stress in Ascending Thoracic Aortic Aneurysms. Journal of Biomechanical<br>Engineering, 2019, 141, . | 0.6 | 14        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Multiscale computation for bioartificial soft tissues with complex geometries. Engineering With Computers, 2009, 25, 87-95.                                                                                                     | 3.5 | 13        |
| 92  | Lag-after-pulsed-separation microfluidic flowmeter for biomacromolecular solutions. Sensors and Actuators B: Chemical, 2004, 99, 25-29.                                                                                         | 4.0 | 12        |
| 93  | A dissolutionâ€diffusion model for the TAXUSâ,,¢ drugâ€eluting stent with surface burst estimated from<br>continuum percolation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009,<br>90B, 267-274. | 1.6 | 12        |
| 94  | Combining Displacement Field and Grip Force Information to Determine Mechanical Properties of<br>Planar Tissue With Complicated Geometry. Journal of Biomechanical Engineering, 2014, 136, .                                    | 0.6 | 12        |
| 95  | Quantification of continuous in vivo flexion–extension kinematics and intervertebral strains.<br>European Spine Journal, 2014, 23, 754-761.                                                                                     | 1.0 | 12        |
| 96  | Multiscale model of fatigue of collagen gels. Biomechanics and Modeling in Mechanobiology, 2019, 18, 175-187.                                                                                                                   | 1.4 | 11        |
| 97  | Investigation of Pathophysiological Aspects of Aortic Growth, Remodeling, and Failure Using a<br>Discrete-Fiber Microstructural Model. Journal of Biomechanical Engineering, 2020, 142, .                                       | 0.6 | 11        |
| 98  | A Model of Strain-Dependent Glomerular Basement Membrane Maintenance and Its Potential<br>Ramifications in Health and Disease. Journal of Biomechanical Engineering, 2012, 134, 081006.                                         | 0.6 | 10        |
| 99  | A nonlinear anisotropic inverse method for computational dissection of inhomogeneous planar tissues. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1630-1646.                                          | 0.9 | 10        |
| 100 | Biomechanics of human parietal pleura in uniaxial extension. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2017, 75, 330-335.                                                                                  | 1.5 | 10        |
| 101 | Mechanics of a two-fiber model with one nested fiber network, as applied to the collagen-fibrin system. Acta Biomaterialia, 2018, 72, 306-315.                                                                                  | 4.1 | 10        |
| 102 | Glomerular filtration and podocyte tensional homeostasis: importance of the minor type IV collagen network. Biomechanics and Modeling in Mechanobiology, 2020, 19, 2433-2442.                                                   | 1.4 | 10        |
| 103 | Effects of Collagen Heterogeneity on Myocardial Infarct Mechanics in a Multiscale Fiber Network<br>Model. Journal of Biomechanical Engineering, 2019, 141, .                                                                    | 0.6 | 10        |
| 104 | Crack Propagation Versus Fiber Alignment in Collagen Gels: Experiments and Multiscale Simulation.<br>Journal of Biomechanical Engineering, 2015, 137, 121002.                                                                   | 0.6 | 8         |
| 105 | Image-based multi-scale mechanical analysis of strain amplification in neurons embedded in collagen gel. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 113-129.                                        | 0.9 | 8         |
| 106 | Marker-Free Tracking of Facet Capsule Motion Using Polarization-Sensitive Optical Coherence<br>Tomography. Annals of Biomedical Engineering, 2015, 43, 2953-2966.                                                               | 1.3 | 7         |
| 107 | Computational Parametric Analysis of the Mechanical Response of Structurally Varying Pacinian Corpuscles. Journal of Biomechanical Engineering, 2017, 139, .                                                                    | 0.6 | 7         |
| 108 | Micropipette aspiration of the Pacinian corpuscle. Journal of Biomechanics, 2017, 63, 104-109.                                                                                                                                  | 0.9 | 7         |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Modeling distributed forces within cell adhesions of varying size on continuous substrates.<br>Cytoskeleton, 2019, 76, 571-585.                                                                                                   | 1.0 | 7         |
| 110 | Coupled lubrication and Stokes flow finite elements. International Journal for Numerical Methods in Fluids, 2003, 43, 129-146.                                                                                                    | 0.9 | 6         |
| 111 | Image-based multiscale structural models of fibrous engineered tissues. , 2009, 2009, 4270-2.                                                                                                                                     |     | 6         |
| 112 | Pigment Dispersion Syndrome Patients Do Not Have Larger-than-normal Irides. Journal of Glaucoma, 2010, 19, 493-496.                                                                                                               | 0.8 | 6         |
| 113 | Automatic Segmentation of Mechanically Inhomogeneous Tissues Based on Deformation Gradient<br>Jump. IEEE Transactions on Medical Imaging, 2016, 35, 29-41.                                                                        | 5.4 | 6         |
| 114 | Multiscale modelling of the human lumbar facet capsular ligament: analysing spinal motion from the joint to the neurons. Journal of the Royal Society Interface, 2018, 15, 20180550.                                              | 1.5 | 6         |
| 115 | Computational and Psychophysical Experiments on the Pacinian Corpuscle's Ability to Discriminate<br>Complex Stimuli. IEEE Transactions on Haptics, 2019, 12, 635-644.                                                             | 1.8 | 6         |
| 116 | Mechanical Performance of Posterior Spinal Instrumentation and Growing Rod Implants. Spine, 2019, 44, 1270-1278.                                                                                                                  | 1.0 | 6         |
| 117 | An Experimental-Computational Approach to Quantify Blood Rheology in Sickle Cell Disease.<br>Biophysical Journal, 2020, 119, 2307-2315.                                                                                           | 0.2 | 6         |
| 118 | Asymmetric in-plane shear behavior of isolated cadaveric lumbar facet capsular ligaments:<br>Implications for subject specific biomechanical models. Journal of Biomechanics, 2020, 105, 109814.                                  | 0.9 | 6         |
| 119 | Local tissue heterogeneity may modulate neuronal responses via altered axon strain fields: insights about innervated joint capsules from a computational model. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2269-2285. | 1.4 | 6         |
| 120 | Functional Tissue-Engineered Valves from Cell-Remodeled Fibrin with Commissural Alignment of Cell-Produced Collagen. Tissue Engineering, 2008, 14, 83-95.                                                                         | 4.9 | 6         |
| 121 | Adaptive Finite Element Analysis of the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics.<br>Computer Methods in Biomechanics and Biomedical Engineering, 2000, 3, 215-229.                                             | 0.9 | 5         |
| 122 | Proteinâ^'Saltâ^'Water Solution Phase Diagram Determination by a Combined<br>Experimentalâ^'Computational Scheme. Crystal Growth and Design, 2008, 8, 4208-4214.                                                                  | 1.4 | 5         |
| 123 | Vascular biomechanical properties in mice with smooth muscle specific deletion of Ndst1. Molecular and Cellular Biochemistry, 2014, 385, 225-238.                                                                                 | 1.4 | 5         |
| 124 | Effect of Supercoiling on the Mechanical and Permeability Properties of Model Collagen IV Networks.<br>Annals of Biomedical Engineering, 2015, 43, 1695-1705.                                                                     | 1.3 | 5         |
| 125 | Quantification of iris concavity. Journal of Ophthalmic and Vision Research, 2010, 5, 211-2.                                                                                                                                      | 0.7 | 5         |
| 126 | Application of the lag-after-pulsed-separation (LAPS) flow meter to different protein solutions.<br>Analyst, The, 2005, 130, 171.                                                                                                 | 1.7 | 4         |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Posterior chamber volume does not change significantly during dilation. British Journal of<br>Ophthalmology, 2009, 93, 1514-1517.                                                                                        | 2.1 | 4         |
| 128 | An inter-species computational analysis of vibrotactile sensitivity in Pacinian and Herbst corpuscles.<br>Royal Society Open Science, 2020, 7, 191439.                                                                   | 1.1 | 4         |
| 129 | The Ring-Pull Assay for Mechanical Properties of Fibrous Soft Tissues – an Analysis of the Uniaxial Approximation and a Correction for Nonlinear Thick-Walled Tissues. Experimental Mechanics, 2021, 61, 53-66.          | 1.1 | 4         |
| 130 | Characterizing Tissue Remodeling and Mechanical Heterogeneity in Cerebral Aneurysms. Journal of<br>Vascular Research, 2022, 59, 34-42.                                                                                   | 0.6 | 4         |
| 131 | Thin-domain modeling of mass transport in microchannels, with application to diffusive mixing.<br>Journal of Applied Physics, 2004, 95, 6435-6443.                                                                       | 1.1 | 3         |
| 132 | Simulation of flow around a thin, flexible obstruction by means of a deforming grid overlapping a fixed grid. International Journal for Numerical Methods in Fluids, 2008, 56, 723-738.                                  | 0.9 | 3         |
| 133 | A computational model of flow and species transport in the mesangium. American Journal of<br>Physiology - Renal Physiology, 2016, 310, F222-F229.                                                                        | 1.3 | 3         |
| 134 | Through-thickness regional variation in the mechanical characteristics of the lumbar facet capsular ligament. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1445-1457.                                          | 1.4 | 3         |
| 135 | A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft<br>Tissue. Journal of Elasticity, 2021, 145, 295-319.                                                                      | 0.9 | 3         |
| 136 | Experimental and Mouse-Specific Computational Models of the Fbln4SMKO Mouse to Identify Potential<br>Biomarkers for Ascending Thoracic Aortic Aneurysm. Cardiovascular Engineering and Technology,<br>2022, 13, 558-572. | 0.7 | 3         |
| 137 | Concentration control for protein crystallization via a continuously-fed crystallization chamber.<br>Lab on A Chip, 2008, 8, 1398.                                                                                       | 3.1 | 2         |
| 138 | A Paradigm for Materials Design for Surgical Simulators, With Specific Application to the Pleura and Needle Decompression1. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .                            | 0.4 | 2         |
| 139 | Fiber-Network Modeling in Biomechanics: Theoretical and Analytical Approaches. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 271-307.                                                          | 0.7 | 2         |
| 140 | Residual stress and osmotic swelling of the periodontal ligament. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2047-2059.                                                                                      | 1.4 | 2         |
| 141 | Uniaxial and Biaxial Mechanical Behavior of Human Amnion. Materials Research Society Symposia<br>Proceedings, 2004, 844, 1.                                                                                              | 0.1 | 1         |
| 142 | In Situ Lumbar Facet Capsular Ligament Strains Due to Joint Pressure and Residual Strain. Journal of<br>Biomechanical Engineering, 2022, , .                                                                             | 0.6 | 1         |
| 143 | Elucidating the signal for contact guidance contained in aligned fibrils with a<br>microstructural–mechanical model. Journal of the Royal Society Interface, 2022, 19, 20210951.<br>                                     | 1.5 | 1         |
| 144 | Telescopic timeâ€scale bridging for modeling dispersion in rapidly oscillating flows. AICHE Journal, 2012, 58, 1987-1997.                                                                                                | 1.8 | 0         |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | PC028 The Effect of Rigid Stent Grafts on the Propagation of Pressures in Aortic Dissection: A<br>Lumped-Parameter Mathematical Model of Flow Through the Descending Thoracic Aorta. Journal of<br>Vascular Surgery, 2017, 65, 147S-148S. | 0.6 | 0         |
| 146 | ANNUAL SPECIAL ISSUE "Biomechanical Engineering: Year in Review― Journal of Biomechanical<br>Engineering, 2017, 139, .                                                                                                                    | 0.6 | 0         |
| 147 | ANNUAL SPECIAL ISSUE "Biomechanical Engineering—2018 Year in Review― Journal of Biomechanical<br>Engineering, 2019, 141, .                                                                                                                | 0.6 | 0         |
| 148 | Vibrotactile perception in Dupuytren disease. Journal of Plastic Surgery and Hand Surgery, 2021, 55, 32-40.                                                                                                                               | 0.4 | 0         |
| 149 | Conceptual Framework Development for a Double-Walled Aortic Stent-Graft to Manage Blood<br>Pressure. Journal of Medical Devices, Transactions of the ASME, 2020, 14, 031005.                                                              | 0.4 | 0         |
| 150 | Finite Element Modeling Using Patient-Specific Geometry to Predict Aortic Valve Insufficiency During Percutaneous Pulmonary Valve Implantation. , 2022, , .                                                                               |     | 0         |