
Laurens Katgerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Progress in Materials Science, 2004, 49, 629-711.	16.0	631
2	In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy. Acta Materialia, 2007, 55, 4287-4292.	3.8	240
3	Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science, 2008, 53, 421-480.	16.0	224
4	Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2056-2066.	1.1	220
5	A Quest for a New Hot Tearing Criterion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1511-1519.	1.1	206
6	The effect of heat treatment on the structure and abrasive wear resistance of autocatalytic NiP and NiP–SiC coatings. Surface and Coatings Technology, 2002, 149, 263-278.	2.2	187
7	Constitutive analysis of wrought magnesium alloy Mg–Al4–Zn1. Scripta Materialia, 2007, 57, 759-762.	2.6	180
8	Modelling of droplet dynamic and thermal histories during spray forming—I. individual droplet behaviour. Acta Metallurgica Et Materialia, 1993, 41, 3097-3108.	1.9	163
9	Characterization of Al-Si-alloys rapidly quenched from the melt. Journal of Materials Science, 1980, 15, 2803-2810.	1.7	135
10	Experimental study of structure formation in binary Al–Cu alloys at different cooling rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 405, 1-10.	2.6	118
11	Electroless Ni–P Composite Coatings: The Effect of Heat Treatment on the Microhardness of Substrate and Coating. Scripta Materialia, 1998, 38, 1347-1353.	2.6	117
12	Structure formation and macrosegregation under different process conditions during DC casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 384, 232-244.	2.6	117
13	Influence of substrate microstructure on the growth of anodic oxide layers. Electrochimica Acta, 2004, 49, 1127-1140.	2.6	114
14	Real-time observation of grain nucleation and growth during solidification of aluminium alloys. Acta Materialia, 2005, 53, 2875-2880.	3.8	113
15	Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1537-1546.	1.1	109
16	A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys. Electrochimica Acta, 2004, 49, 3169-3177.	2.6	101
17	Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3551-3561.	1.1	97
18	Contraction of aluminum alloys during and after solidification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1325-1335.	1.1	95

#	Article	IF	CITATIONS
19	Recent advances in hot tearing during casting of aluminium alloys. Progress in Materials Science, 2021, 117, 100741.	16.0	89
20	Modelling of droplet dynamic and thermal histories during spray forming—II. Effect of process parameters. Acta Metallurgica Et Materialia, 1993, 41, 3109-3118.	1.9	88
21	Ductility and Rheology of an Al-4.5% Cu Alloy from Room Temperature to Coherency Temperature. Materials Science Forum, 1996, 217-222, 1209-1214.	0.3	83
22	Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1965-1976.	1.1	82
23	Effect of different grain structures on centerline macrosegregation during direct-chill casting. Acta Materialia, 2008, 56, 1358-1365.	3.8	80
24	On the mechanism of grain refinement in Al–Zr–Ti alloys. Journal of Alloys and Compounds, 2011, 509, 57-60.	2.8	80
25	Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys. Journal of Materials Science, 2011, 46, 5252-5259.	1.7	79
26	Hot workability analysis of extruded AZ magnesium alloys with processing maps. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 735-744.	2.6	76
27	A Mathematical Model for Hot Cracking of Aluminum Alloys During D.C. Casting. Journal of Metals, 1982, 34, 46-49.	0.2	71
28	Modeling Macrosegregation during Direct-Chill Casting of Multicomponent Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 180-189.	1.1	63
29	Constitutive Model for Aluminum Alloys Exposed to Fire Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 778-789.	1.1	61
30	Thermal conductivity of metal powder-polymer feedstock for powder injection moulding. Journal of Materials Science, 1999, 34, 1-5.	1.7	57
31	Tensile behaviour of semi-solid industrial aluminium alloys AA3104 and AA5182. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 336, 1-6.	2.6	55
32	Structure observations related to hot tearing of Al–Cu billets produced by direct-chill casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 420, 1-7.	2.6	55
33	Relationship between shrinkage-induced macrosegregation and the sump profile upon direct-chill casting. Scripta Materialia, 2006, 55, 715-718.	2.6	55
34	Rapidly solidified aluminium alloys by meltspinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 1212-1216.	2.6	53
35	In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 416, 18-32.	2.6	51
36	On the formation of the stircast structure. Journal of Materials Science, 1986, 21, 389-394.	1.7	50

#	Article	IF	CITATIONS
37	Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature. Surface and Coatings Technology, 2002, 157, 80-94.	2.2	50
38	Integrated Approach for Prediction of Hot Tearing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2388-2400.	1.1	50
39	Friction in aluminium extrusion—Part 1: A review of friction testing techniques for aluminium extrusion. Tribology International, 2012, 56, 89-98.	3.0	50
40	AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature using different current waveforms. Surface and Coatings Technology, 2003, 165, 232-240.	2.2	49
41	Fracture behavior and mechanical properties of high strength aluminum alloys in the as-cast condition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 186-194.	2.6	47
42	In-situ formation of TiB 2 in a P/M aluminum matrix. Scripta Materialia, 1997, 37, 293-297.	2.6	46
43	Constitutive behavior of as-cast AA1050, AA3104, and AA5182. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1971-1980.	1.1	46
44	Cold-Cracking Assessment in AA7050 Billets during Direct-Chill Casting by Thermomechanical Simulation of Residual Thermal Stresses and Application of Fracture Mechanics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3304-3313.	1.1	46
45	Two-dimensional modelling and experimental study on microsegregation during solidification of an Al–Cu binary alloy. Acta Materialia, 2007, 55, 1523-1532.	3.8	45
46	Vickers microhardness of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature. Surface and Coatings Technology, 2003, 165, 309-315.	2.2	44
47	Cold cracking in DC-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2831-2842.	2.6	44
48	Solid-state reactions in low-phosphorus autocatalytic NiP–SiC coatings. Surface and Coatings Technology, 2001, 148, 284-295.	2.2	43
49	Finite element method simulation of mushy zone behavior during direct-chill casting of an Al-4.5 pct Cu alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2917-2926.	1.1	40
50	Feathery grain growth during solidification under forced flow conditions. Acta Materialia, 2007, 55, 3795-3801.	3.8	39
51	The origin of weld seam defects related to metal flow in the hot extrusion of aluminium alloys EN AW-6060 and EN AW-6082. Journal of Materials Processing Technology, 2014, 214, 2349-2358.	3.1	39
52	Effect of Grain Refinement on Structure Evolution, "Floating―Grains, and Centerline Macrosegregation in Direct-Chill Cast AA2024 Alloy Billets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 450-461.	1.1	37
53	Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys. Journal of Materials Science, 2008, 43, 7165-7170.	1.7	35
54	Modelling issues in macrosegregation predictions in direct chill castings. Journal of Light Metals, 2002, 2, 149-159.	0.8	34

#	Article	IF	CITATIONS
55	The effect of ramping casting speed and casting temperature on temperature distribution and melt flow patterns in the sump of a DC cast billet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 144-150.	2.6	33
56	Cold Cracking Development in AA7050 Direct Chill–Cast Billets under Various Casting Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2425-2434.	1.1	33
57	Modelling of defects in aluminium cast products. Progress in Materials Science, 2022, 123, 100824.	16.0	33
58	Scale Rules for Macrosegregation during Direct-Chill Casting of Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1206-1212.	1.1	32
59	Effect of Main Elements (Zn, Mg, and Cu) on Hot Tearing Susceptibility During Direct-Chill Casting of 7xxx Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3603-3616.	1.1	32
60	Particles Co-Deposition by Electroless Nickel. Scripta Materialia, 1998, 38, 1383-1389.	2.6	30
61	Physical Simulation of Longitudinal Weld Seam Formation During Extrusion to Produce Hollow Aluminum Profiles. Materials and Manufacturing Processes, 2009, 24, 409-421.	2.7	29
62	Analysis of the structure and resulting mechanical properties of aluminium extrusions containing a charge weld interface. Journal of Materials Processing Technology, 2016, 229, 9-21.	3.1	29
63	Electrochemical investigation of rolled-in subsurface layers in commercially pure aluminium alloys with the micro-capillary cell technique. Surface and Coatings Technology, 2007, 201, 4553-4560.	2.2	28
64	The structure of stircast Al-6Cu. Journal of Materials Science, 1985, 20, 4335-4344.	1.7	27
65	Micro-Mechanical Model of Hot Tearing at Triple Junctions in DC Casting. Materials Science Forum, 2002, 396-402, 179-184.	0.3	26
66	The role of solute titanium and TiB2 particles in the liquid–solid phase transformation of aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 20-26.	2.6	26
67	Distribution of trace elements in a modified and grain refined aluminium–silicon hypoeutectic alloy. Micron, 2010, 41, 554-559.	1.1	26
68	Contribution of forced centreline convection during direct chill casting of round billets to macrosegregation and structure of binary Al–Cu aluminium alloy. Materials Science and Technology, 2011, 27, 890-896.	0.8	26
69	Structural inhomogeneities of AlSi alloys rapidly quenched from the melt. Journal of Materials Science, 1982, 17, 2887-2894.	1.7	23
70	Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1828-1834.	2.6	23
71	Effect of melt flow on macro- and microstructure evolution during solidification of an Al–4.5% Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 98-104.	2.6	22
72	The effect of constitutive description of PIM feedstock viscosity in numerical analysis of the powder injection moulding process. Journal of Materials Processing Technology, 2006, 178, 194-199.	3.1	22

#	Article	IF	CITATIONS
73	Role of grain refining in hot cracking and macrosegregation in direct chill cast AA 7075 billets. Materials Science and Technology, 2007, 23, 1327-1335.	0.8	22
74	Production of Al–Ti–C grain refiner alloys by reactive synthesis of elemental powders: Part I. Reactive synthesis and characterization of alloys. Journal of Materials Research, 2000, 15, 2620-2627.	1.2	21
75	Experimental study of ordering kinetics in aluminum alloys during solidification. Acta Materialia, 2003, 51, 4497-4504.	3.8	21
76	Factors affecting thermal contraction behavior of an AA7050 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3264-3270.	2.6	21
77	A computational and experimental study on mold filling. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2001, 32, 69-78.	1.0	20
78	Influence of Melt Feeding Scheme and Casting Parameters During Direct-Chill Casting on Microstructure of an AA7050 Billet. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 1565-1573.	1.0	20
79	Identification of a friction model for the bearing channel of hot aluminium extrusion dies by using ball-on-disc tests. Tribology International, 2012, 50, 66-75.	3.0	20
80	Hot Tearing Studies in AA5182. Journal of Materials Engineering and Performance, 2002, 11, 537-543.	1.2	19
81	Nucleation kinetics during the solidification of aluminum alloys. Journal of Non-Crystalline Solids, 2007, 353, 3640-3643.	1.5	19
82	Shear Initiation of Al/MoO3-Based Reactive Materials. Propellants, Explosives, Pyrotechnics, 2007, 32, 447-453.	1.0	19
83	In-Situ Analysis of Coarsening during Directional Solidification Experiments in High-Solute Aluminum Alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 312-316.	1.0	19
84	A Computer Model for Trajectories and Thermal Profiles of Atomised Droplets in Spray Forming. Cast Metals, 1990, 3, 227-232.	0.4	18
85	Linear solidification contraction of binary and commercial aluminium alloys. International Journal of Cast Metals Research, 2002, 14, 217-223.	0.5	18
86	Periodic structural fluctuations during the solidification of aluminum alloys studied by neutron diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 82-88.	2.6	18
87	Solidification under Forced-Flow Conditions in a Shallow Cavity. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1317-1329.	1.1	18
88	Room-temperature low-cycle fatigue and fracture behaviour of asymmetrically rolled high-strength 7050 aluminium alloy plates. International Journal of Fatigue, 2021, 142, 105919.	2.8	18
89	Theoretical analysis of ribbon thickness formation during meltspinning. Scripta Metallurgica, 1980, 14, 861-864.	1.2	17
90	Microsegregation and extended solid solutions after rapid solidification of aluminium alloys. Scripta Metallurgica, 1983, 17, 537-540.	1.2	17

#	Article	IF	CITATIONS
91	A modified hot tearing criterion for direct chill casting of aluminium alloys. Materials Science and Technology, 2016, 32, 846-854.	0.8	16
92	Experimental and Theoretical Studies of the Hot Tearing Behavior of Al-xZn-2Mg-2Cu Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4744-4754.	1.1	16
93	Role of Grain Refining in Macrosegregation upon Direct Chill Casting of AA 2024 Round Billet. Materials Science Forum, 2006, 519-521, 1841-1846.	0.3	15
94	First stages of grain coarsening in semi-solid Al?Cu alloys. Scripta Materialia, 2003, 49, 717-722.	2.6	14
95	Optical and transmission electron microscopical study of the evolution of surface layer on recycled aluminium along the rolling mills. Surface and Coatings Technology, 2007, 201, 4561-4570.	2.2	14
96	Thermal Contraction during Solidification of Aluminium Alloys. Materials Science Forum, 2006, 519-521, 1681-1686.	0.3	13
97	Temperature effects in aluminium melts due to cavitation induced by high power ultrasound. International Journal of Cast Metals Research, 2009, 22, 26-29.	0.5	13
98	In-situ observation of the nucleation kinetics and the mechanism of grain refinement in Al–Si alloys (Part I). Materials Letters, 2010, 64, 1016-1018.	1.3	13
99	Tensile mechanical properties, constitutive parameters and fracture characteristics of an as-cast AA7050 alloy in the near-solidus temperature regime. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 28-35.	2.6	13
100	Comparison of numerical codes for simulation of powder injection moulding. Powder Metallurgy, 2003, 46, 55-60.	0.9	12
101	The Influence of the Solid-State Bonding Process on the Mechanical Integrity of Longitudinal Weld Seams. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2006, 49, 63-68.	0.4	12
102	Semi-quantitative predictions of hot tearing and cold cracking in aluminum DC casting using numerical process simulator. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012068.	0.3	12
103	Estimation ofT 0-curves from existing phase diagrams. Journal of Materials Science Letters, 1983, 2, 444-446.	0.5	11
104	Combustion synthesis of TiB2-based cermets: modeling and experimental results. Applied Physics A: Materials Science and Processing, 2008, 90, 159-163.	1.1	11
105	Macrosegregation Mechanisms in Direct-Chill Casting of Aluminium Alloys. Materials Science Forum, 0, 630, 193-199.	0.3	11
106	Numerical issues in modelling macrosegregation during DC casting of a multi omponent aluminium alloy. International Journal of Numerical Methods for Heat and Fluid Flow, 2009, 19, 917-930.	1.6	11
107	Modeling of double action extrusion—A novel extrusion process for friction characterization at the billet–die bearing interface. Tribology International, 2010, 43, 2084-2091.	3.0	11
108	Principles of Solidification. Materials Today, 2011, 14, 502.	8.3	11

#	Article	IF	CITATIONS
109	Semi-solid Constitutive Parameters and Failure Behavior of a Cast AA7050 Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 871-888.	1.1	11
110	A combined TEM and SKPFM investigation of the surface layers on rolled AA5050 aluminium alloy using ultraâ€microtomy. Surface and Interface Analysis, 2008, 40, 1157-1163.	0.8	10
111	An efficient technique for describing a multi-component open system solidification path. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 478-484.	0.7	10
112	Microstructural analysis of modification and grain refinement in a hypoeutectic Al–Si alloy. International Journal of Cast Metals Research, 2009, 22, 108-110.	0.5	10
113	Effect of inlet geometry on macrosegregation during the direct chill casting of 7050 alloy billets: experiments and computer modelling. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012019.	0.3	10
114	Formation of Hot Tear Under Controlled Solidification Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2855-2862.	1.1	10
115	Microstructural and X-ray tomographic analysis of damage in extruded aluminium weld seams. Materials Science and Technology, 2015, 31, 94-104.	0.8	10
116	In Search of the Prediction of Hot Cracking in Aluminium Alloys. , 2008, , 11-26.		10
117	Analysis of process limits for continuous thixotropic slurry casting. Journal of Materials Science, 1985, 20, 700-709.	1.7	9
118	Understanding the electrochemical, microstructural and morphological changes during hot rolling from a corrosion perspective. Surface and Coatings Technology, 2006, 201, 828-834.	2.2	9
119	Thermal expansion/contraction behavior of AA7050 alloy in the as-cast condition relevant to thermomechanical simulation of residual thermal stresses. International Journal of Materials Research, 2011, 102, 1286-1293.	0.1	9
120	Mechanical properties and cold cracking evaluations of four 7×× × series aluminum alloys using a newly developed index. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 230-237.	2.6	9
121	Influence of matrix alloying elements on reactive synthesis of 2124 aluminium alloy metal matrix composites. Materials Science and Technology, 1998, 14, 873-876.	0.8	8
122	Effect of Structure on Hot Tearing Properties of Aluminum Alloys. Materials Science Forum, 2007, 561-565, 995-998.	0.3	8
123	Prediction of pressure required to extrude a wrought magnesium alloy using optimized strain-dependent constitutive parameters. Journal of Materials Processing Technology, 2011, 211, 1241-1246.	3.1	8
124	On the mechanism of the formation of primary intermetallics under ultrasonic melt treatment in an Al-Zr-Ti alloy. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012002.	0.3	8
125	Tailoring precipitation/properties and related mechanisms for a high-strength aluminum alloy plate via low-temperature retrogression and re-aging processes. Journal of Materials Science and Technology, 2022, 120, 15-35.	5.6	8
126	Microstructural Observations of Cracking in AA5182 at Semi-Solid Temperatures. Materials Science Forum, 2000, 331-337, 265-270.	0.3	7

#	Article	IF	CITATIONS
127	Experimental Study of Grain Growth in Aluminium Melts under the Influence of Ultrasonic Melt Treatment. Materials Science Forum, 2007, 561-565, 987-990.	0.3	7
128	A comparative electrochemical study of commercial and model aluminium alloy (AA5050). Materials and Corrosion - Werkstoffe Und Korrosion, 2009, 60, 399-406.	0.8	7
129	Linear Contraction Behavior of Low-Carbon, Low-Alloy Steels During and After Solidification Using Real-Time Measurements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1445-1456.	1.1	7
130	The nucleation of a second phase on a screw dislocation. Acta Metallurgica, 1978, 26, 361-367.	2.1	6
131	Developments in Continuous Casting of Aluminium Alloys. Cast Metals, 1991, 4, 133-139.	0.4	6
132	Production of Al–Ti–C grain refiner alloys by reactive synthesis of elemental powders: Part II. Grain refining performance of alloys and secondary processing. Journal of Materials Research, 2000, 15, 2628-2635.	1.2	6
133	Liquid Film Migration in Aluminium Brazing Sheet?. Materials Science Forum, 2006, 519-521, 1151-1156.	0.3	6
134	Mixing and solidification of a turbulent liquid jet in a co-flowing stream. International Journal for Numerical Methods in Engineering, 1987, 24, 231-249.	1.5	5
135	Physical Simulation of Longitudinal Weld Seam Formation in Aluminium Extrusions. Materials Science Forum, 2006, 519-521, 1403-1408.	0.3	5
136	Solidification phenomena related to direct chill casting of aluminium alloys: fundamental studies and future challenges. Materials Technology, 2009, 24, 152-156.	1.5	5
137	Effect of controlled forced convection on macrosegregation and structure in direct-chill casting of an aluminium alloy. International Journal of Cast Metals Research, 2009, 22, 99-102.	0.5	5
138	Application of a Criterion for Cold Cracking to Casting High Strength Aluminium Alloys. Materials Science Forum, 2010, 654-656, 1432-1435.	0.3	5
139	Modeling of primary dendrite arm spacing variations in thin-slab casting of low carbon and low alloy steels. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012046.	0.3	5
140	Formation of Microstructure in Al-Si Alloys Under Ultrasonic Melt Treatment. , 2012, , 999-1004.		5
141	RELATION BETWEEN SOLIDIFICATION MORPHOLOGY AND TEXTURE OF MELT-SPUN AI AND AI-ALLOYS. , 1985, , 823-826.		5
142	Influence of matrix alloying elements on reactive synthesis of 2124 aluminium alloy metal matrix composites. Materials Science and Technology, 1998, 14, 873-876.	0.8	5
143	Production of SiC particulate reinforced aluminium composites by melt spinning. Journal of Materials Science, 1994, 29, 6439-6444.	1.7	4
144	Upstream Fluid Flow Effects in Aluminium DC Casting. Materials Science Forum, 2002, 396-402, 65-70.	0.3	4

#	Article	IF	CITATIONS
145	Shear Initiated Reactions in Energetic and Reactive Materials. Materials Research Society Symposia Proceedings, 2005, 896, 61.	0.1	4
146	Towards Predictive Control of Extrusion Weld Seams: An Integrated Approach. Key Engineering Materials, 0, 424, 9-17.	0.4	4
147	Numerical Simulation of Residual Thermal Stresses in AA7050 Alloy during DC-Casting Using ALSIM5. Advanced Materials Research, 0, 89-91, 319-324.	0.3	4
148	EFFECT OF PROCESS CONDITIONS DURING MELTSPINNING ON SOLIDIFICATION MORPHOLOGY OF ALUMINIUM ALLOYS. , 1985, , 819-822.		4
149	The effect of soaking times on the mechanical properties of rapidly solidified aluminium alloys. Journal of Materials Science Letters, 1983, 2, 67-70.	0.5	3
150	Modelling of liquid-liquid metal mixing. Flow, Turbulence and Combustion, 1987, 44, 175-195.	0.2	3
151	Network model of fluid flow in semi-solid aluminum alloys. Computational Materials Science, 2006, 38, 67-74.	1.4	3
152	Consequences of Hot Rolling of Recycled AA5050 on Filiform Corrosion. Materials Science Forum, 2006, 519-521, 687-692.	0.3	3
153	Unsteady-State Solidification under Forced Flow Conditions. Materials Science Forum, 2007, 561-565, 991-994.	0.3	3
154	Numerical Evaluation of Cyclone Application for Impurities Removal from Molten Aluminum. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2008, 39, 364-373.	1.0	3
155	Constitutive behaviour of an as-cast AA7050 alloy in the sub-solidus temperature range. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012074.	0.3	3
156	Effect of Casting Speed and Grain Refining on Macrosegregation of a DC Cast 6061 Aluminum Alloy. , 0, , 277-282.		3
157	Casting characteristics of high silicon added F3S.20S Duralcan composites. International Journal of Cast Metals Research, 2000, 13, 59-65.	0.5	2
158	Effect of strain rate and thermal history on the constitutive behaviour of Al – Mg alloy AA 5182. Materials Science and Technology, 2004, 20, 1233-1236.	0.8	2
159	Functionally Graded TiC-Based Cermets via Combustion Synthesis and Quasi-Isostatic Pressing. Materials Science Forum, 2005, 492-493, 63-68.	0.3	2
160	3D Microstructure Reconstruction of Aluminium Alloys Quenched during Solidification. Materials Science Forum, 2006, 519-521, 1707-1712.	0.3	2
161	Experimental Study and Modelling of Combustion Front Velocity in Ti-2B and Ti-C Based Reactant Mixtures. Advances in Science and Technology, 2006, 45, 2656.	0.2	2
162	Combustion synthesis of electrical contact materials. International Journal of Self-Propagating High-Temperature Synthesis, 2007, 16, 184-188.	0.2	2

#	Article	IF	CITATIONS
163	Quenching Study on the Solidification of Aluminum Alloys. , 0, , 290-295.		2
164	Mixing and Solidification of a Turbulent Liquid Metal Jet. Lecture Notes in Engineering, 1986, , 397-407.	0.1	2
165	On the Mechanism of Grain Refinement by Ultrasonic Melt Treatment in the Presence of Transition Metals. , 2016, , 415-419.		2
166	Experimental and Numerical Investigations of Mould Filling of Thin Wall Horizontal Aluminium Castings. Materials Science Forum, 2000, 329-330, 461-466.	0.3	1
167	Characterisation of 316L powder injection moulding feedstock for purpose of numerical simulation of PIM process. Powder Metallurgy, 2003, 46, 236-240.	0.9	1
168	Microscopic View on Grain Nucleation and Growth Kinetics During Solidification of Aluminum Alloys. Materials Research Society Symposia Proceedings, 2004, 840, Q7.12.1.	0.1	1
169	SANS investigations on the solidification of aluminum alloys. Physica B: Condensed Matter, 2004, 350, E1011-E1014.	1.3	1
170	A direct method of solidification for the enhancement of mushy zone network models. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 255-258.	2.6	1
171	Effects of Solidification Range on the Structure of Aluminium Alloys Obtained under Conditions of Constant Melt Flow. Materials Science Forum, 2006, 519-521, 1789-1794.	0.3	1
172	Thermal Contraction of AA5182 for Prediction of Ingot Distortions. Key Engineering Materials, 2006, 306-308, 977-982.	0.4	1
173	Influence of dendrite arrangement on coarsening during solidification of high-solute Al alloys. International Journal of Cast Metals Research, 2009, 22, 271-274.	0.5	1
174	Effect of V and N on the microstructure evolution during continuous casting of steel. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012059.	0.3	1
175	Experimental Description and Process Simulation of Direct Chill (DC) Casting of Aluminum Alloys. , 0, , 243-257.		1
176	Effects of Process Parameters on the Characteristics of the Billet Sump and Related Defect Formation during DC Casting of Aluminum Alloys. , 0, , 271-276.		1
177	Consequences of Hot Rolling of Recycled AA5050 on Filiform Corrosion. Materials Science Forum, 0, , 687-692.	0.3	1
178	Functionally Graded TiC-Based Cermets via Combustion Synthesis and Quasi-Isostatic Pressing. Materials Science Forum, 0, , 63-68.	0.3	1
179	Effect of Melt Flow on Macrostructure and Macrosegregation of an Al-4.5% Cu Alloy. , 0, , 283-289.		1

#	Article	IF	CITATIONS
181	Cold Cracking During Direct-Chill Casting. , 2016, , 939-944.		1
182	Effect of Grain Refining on Defect Formation in DC Cast Al-Zn-Mg-Cu Alloy Billet. , 2016, , 842-847.		1
183	Modelling of liquid-liquid metal mixing. Mathematical and Computer Modelling, 1988, 10, 797.	2.0	0
184	Reactive hot pressing of aluminum matrix composites. Journal of Materials Research, 1999, 14, 4246-4250.	1.2	0
185	Influence of Process Parameters on the Microstructure in the Strip Casting Process. Materials Science Forum, 2000, 331-337, 313-318.	0.3	0
186	Determination of Boundary Conditions During the Start-Up of DC Casting. , 2002, , 147.		0
187	Tensile Behaviour of DC-cast AA5182 in Solid and Semi-solid State. , 2006, , 239-244.		0
188	The importance of the near-surface region in the surface pre-treatment of rolled recycled aluminium. , 2007, , 71-82.		0
189	3D Microstructure Development during Unconstrained Solidification of Aluminum Alloys. Materials Science Forum, 0, 561-565, 1015-1018.	0.3	0
190	Solute transport and phase composition in an Al–Mg–Si alloy solidified under conditions of forced flow. International Journal of Materials Research, 2008, 99, 26-35.	0.1	0
191	Different grain morphologies in grain-refined 7075 billet. Materials Science and Technology, 2009, 25, 1175-1182.	0.8	0
192	Structure and Defect Formation during DC Casting of Aluminium Alloys. Materials Science Forum, 2012, 710, 43-49.	0.3	0
193	Continuous Products in Rapid Solidification. , 1986, , 121-136.		0
194	Modelling of liquid-liquid metal mixing. , 1987, , 175-195.		0
195	Challenges in modelling of solidification processes. , 1994, , 23-30.		0
196	Constitutive Behavior of Wrought Magnesium Alloy AZ61. , 2016, , 339-344.		0