Jiangli Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9556962/publications.pdf

Version: 2024-02-01

		22099	22102
148	13,706	59	113
papers	citations	h-index	g-index
148	148	148	10570
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent Development of Chemosensors Based on Cyanine Platforms. Chemical Reviews, 2016, 116, 7768-7817.	23.0	825
2	Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chemical Society Reviews, 2013, 42, 29-43.	18.7	757
3	Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. Accounts of Chemical Research, 2016, 49, 2115-2126.	7.6	741
4	Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chemical Society Reviews, 2021, 50, 4185-4219.	18.7	576
5	Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors. Journal of the American Chemical Society, 2018, 140, 14851-14859.	6.6	442
6	An "Enhanced PET―Based Fluorescent Probe with Ultrasensitivity for Imaging Basal and Elesclomol-Induced HClO in Cancer Cells. Journal of the American Chemical Society, 2014, 136, 12820-12823.	6.6	435
7	NIR Lightâ€Driving Barrierâ€Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy. Advanced Materials, 2020, 32, e1907855.	11.1	422
8	Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions. Chemical Society Reviews, 2015, 44, 4337-4366.	18.7	386
9	Fluorescence Ratiometry and Fluorescence Lifetime Imaging: Using a Single Molecular Sensor for Dual Mode Imaging of Cellular Viscosity. Journal of the American Chemical Society, 2011, 133, 6626-6635.	6.6	375
10	Carbon Dots for In Vivo Bioimaging and Theranostics. Small, 2019, 15, e1805087.	5.2	337
11	A two-photon fluorescent probe with near-infrared emission for hydrogen sulfide imaging in biosystems. Chemical Communications, 2013, 49, 3890.	2.2	295
12	Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chemical Society Reviews, 2020, 49, 6800-6815.	18.7	272
13	An Off–On COX-2-Specific Fluorescent Probe: Targeting the Golgi Apparatus of Cancer Cells. Journal of the American Chemical Society, 2013, 135, 11663-11669.	6.6	265
14	Unimolecular Photodynamic O ₂ -Economizer To Overcome Hypoxia Resistance in Phototherapeutics. Journal of the American Chemical Society, 2020, 142, 5380-5388.	6.6	242
15	Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles' Heels of Photodynamic Oncotherapy. Journal of the American Chemical Society, 2019, 141, 2695-2702.	6.6	238
16	Activityâ€Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Imageâ€Guided Surgery. Angewandte Chemie - International Edition, 2021, 60, 17268-17289.	7.2	220
17	Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(ii) in living cells. Organic and Biomolecular Chemistry, 2005, 3, 1387.	1.5	204
18	Ratiometric Fluorescence Imaging of Cellular Polarity: Decrease in Mitochondrial Polarity in Cancer Cells. Angewandte Chemie - International Edition, 2015, 54, 2510-2514.	7.2	204

#	Article	IF	CITATIONS
19	Activity-Based Sensing and Theranostic Probes Based on Photoinduced Electron Transfer. Accounts of Chemical Research, 2019, 52, 2818-2831.	7.6	202
20	Aminopeptidase N Activatable Fluorescent Probe for Tracking Metastatic Cancer and Image-Guided Surgery via <i>in Situ</i> Spraying. Journal of the American Chemical Society, 2020, 142, 6381-6389.	6.6	187
21	De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation. Journal of the American Chemical Society, 2018, 140, 15820-15826.	6.6	167
22	Oxygen-Dependent Regulation of Excited-State Deactivation Process of Rational Photosensitizer for Smart Phototherapy. Journal of the American Chemical Society, 2020, 142, 1510-1517.	6.6	167
23	A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. Analyst, The, 2013, 138, 6091.	1.7	164
24	Small-molecule fluorescent probes for imaging gaseous signaling molecules: current progress and future implications. Chemical Science, 2020, 11, 5127-5141.	3.7	161
25	Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy. Chemical Science, 2019, 10, 10586-10594.	3.7	151
26	FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite. Chemical Communications, 2012, 48, 2949.	2.2	143
27	Fluorescence Discrimination of Cancer from Inflammation by Molecular Response to COX-2 Enzymes. Journal of the American Chemical Society, 2013, 135, 17469-17475.	6.6	143
28	Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials, 2020, 233, 119755.	5.7	139
29	Boron Dipyrromethene Nanoâ€Photosensitizers for Anticancer Phototherapies. Small, 2019, 15, e1804927.	5.2	135
30	An Activatable AlEgen Probe for Highâ€Fidelity Monitoring of Overexpressed Tumor Enzyme Activity and Its Application to Surgical Tumor Excision. Angewandte Chemie - International Edition, 2020, 59, 10186-10195.	7.2	134
31	Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Coordination Chemistry Reviews, 2021, 427, 213604.	9.5	104
32	An Effective Minor Groove Binder as a Red Fluorescent Marker for Live ell DNA Imaging and Quantification. Angewandte Chemie - International Edition, 2011, 50, 4180-4183.	7.2	102
33	Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7832-7840.	4.0	99
34	An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials, 2020, 253, 120089.	5.7	99
35	$\langle i \rangle$ In situ $\langle i \rangle$ imaging of aminopeptidase N activity in hepatocellular carcinoma: a migration model for tumour using an activatable two-photon NIR fluorescent probe. Chemical Science, 2019, 10, 1619-1625.	3.7	97
36	A lysosome-targeted BODIPY as potential NIR photosensitizer for photodynamic therapy. Dyes and Pigments, 2017, 147, 99-105.	2.0	95

#	Article	IF	Citations
37	A two-photon NIR-to-NIR fluorescent probe for imaging hydrogen peroxide in living cells. Biosensors and Bioelectronics, 2017, 94, 536-543.	5.3	94
38	A Fluorescent Probe for Ratiometric Imaging of SO ₂ Derivatives in Mitochondria of Living Cells. Industrial & Samp; Engineering Chemistry Research, 2016, 55, 1477-1483.	1.8	90
39	Imaging \hat{I}^3 -Glutamyltranspeptidase for tumor identification and resection guidance via enzyme-triggered fluorescent probe. Biomaterials, 2018, 179, 1-14.	5.7	88
40	A ratiometric fluorescence probe for lysosomal polarity. Biomaterials, 2018, 164, 98-105.	5.7	87
41	A near-infrared dye based on BODIPY for tracking morphology changes in mitochondria. Chemical Communications, 2013, 49, 10620.	2.2	83
42	Color-Tunable and ESIPT-Inspired Solid Fluorophores Based on Benzothiazole Derivatives: Aggregation-Induced Emission, Strong Solvatochromic Effect, and White Light Emission. ACS Applied Materials & Derivatives, 2020, 12, 55094-55106.	4.0	80
43	An Approach to Developing Cyanines with Simultaneous Intersystem Crossing Enhancement and Excited-State Lifetime Elongation for Photodynamic Antitumor Metastasis. Journal of the American Chemical Society, 2021, 143, 12345-12354.	6.6	80
44	Development of a novel anti-tumor theranostic platform: a near-infrared molecular upconversion sensitizer for deep-seated cancer photodynamic therapy. Chemical Science, 2019, 10, 10106-10112.	3.7	79
45	The concept and examples of type-III photosensitizers for cancer photodynamic therapy. CheM, 2022, 8, 197-209.	5. 8	78
46	A novel Mn–Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chemical Communications, 2019, 55, 12956-12959.	2.2	75
47	A Two-Photon Fluorescent Probe for Lysosomal Thiols in Live Cells and Tissues. Scientific Reports, 2016, 6, 19562.	1.6	74
48	An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells. Chemical Communications, 2018, 54, 7038-7041.	2.2	74
49	ER-Targeting Cyanine Dye as an NIR Photoinducer to Efficiently Trigger Photoimmunogenic Cancer Cell Death. Journal of the American Chemical Society, 2022, 144, 3477-3486.	6.6	73
50	Visualization of methylglyoxal in living cells and diabetic mice model with a 1,8-naphthalimide-based two-photon fluorescent probe. Chemical Science, 2018, 9, 6758-6764.	3.7	72
51	A Hg2+ fluorescent chemosensor without interference from anions and Hg2+-imaging in living cells. Sensors and Actuators B: Chemical, 2009, 142, 191-196.	4.0	69
52	Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials, 2021, 278, 121167.	5.7	69
53	Mitochondria-Anchored Colorimetric and Ratiometric Fluorescent Chemosensor for Visualizing Cysteine/Homocysteine in Living Cells and <i>Daphnia magna</i> Model. Analytical Chemistry, 2019, 91, 12531-12537.	3.2	66
54	Aminopeptidaseâ€Nâ€activated Theranostic Prodrug for NIR Tracking of Local Tumor Chemotherapy. Advanced Functional Materials, 2018, 28, 1805128.	7.8	65

#	Article	IF	CITATIONS
55	Mitochondria-Accessing Ratiometric Fluorescent Probe for Imaging Endogenous Superoxide Anion in Live Cells and <i>Daphnia magna</i> . ACS Sensors, 2018, 3, 735-741.	4.0	64
56	Strong π–π Stacking Stabilized Nanophotosensitizers: Improving Tumor Retention for Enhanced Therapy for Large Tumors in Mice. Advanced Materials, 2022, 34, e2106797.	11.1	64
57	A Single Molecule Drug Targeting Photosensitizer for Enhanced Breast Cancer Photothermal Therapy. Small, 2020, 16, e1907677.	5.2	62
58	An NIR fluorescent probe of uric HSA for renal diseases warning. Dyes and Pigments, 2016, 133, 79-85.	2.0	61
59	Fluorescence completely separated ratiometric probe for HClO in lysosomes. Sensors and Actuators B: Chemical, 2017, 246, 293-299.	4.0	60
60	Highly Sensitive Naphthalene-Based Two-Photon Fluorescent Probe for in Situ Real-Time Bioimaging of Ultratrace Cyclooxygenase-2 in Living Biosystems. Analytical Chemistry, 2014, 86, 9131-9138.	3.2	58
61	Near-Infrared Chemiluminescent Probe for Real-Time Monitoring Singlet Oxygen in Cells and Mice Model. ACS Sensors, 2020, 5, 3158-3164.	4.0	58
62	A new PET fluorescent sensor for Zn2+. Journal of Luminescence, 2005, 114, 125-130.	1.5	54
63	Celecoxib Conjugated Fluorescent Probe for Identification and Discrimination of Cyclooxygenase-2 Enzyme in Cancer Cells. Analytical Chemistry, 2018, 90, 5187-5193.	3.2	54
64	A Nile blue based infrared fluorescent probe: imaging tumors that over-express cyclooxygenase-2. Chemical Communications, 2015, 51, 792-795.	2.2	53
65	Differentiating RNA from DNA by a molecular fluorescent probe based on the "door-bolt―mechanism biomaterials. Biomaterials, 2018, 177, 78-87.	5.7	52
66	Oligo Hyaluronanâ€Coated Silica/Hydroxyapatite Degradable Nanoparticles for Targeted Cancer Treatment. Advanced Science, 2019, 6, 1900716.	5.6	51
67	Smart J-aggregate of cyanine photosensitizer with the ability to target tumor and enhance photodynamic therapy efficacy. Biomaterials, 2021, 269, 120532.	5.7	50
68	Protein nanoparticles containing Cu(II) and DOX for efficient chemodynamic therapy via self-generation of H2O2. Chinese Chemical Letters, 2020, 31, 3127-3130.	4.8	49
69	Single-Molecule Förster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy. ACS Central Science, 2021, 7, 327-334.	5.3	49
70	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2020, 59, 20008-20016.	7.2	48
71	Fluorescence imaging lysosomal changes during cell division and apoptosis observed using Nile Blue based near-infrared emission. Chemical Communications, 2014, 50, 882-884.	2.2	47
72	Development of a red-light emission hypoxia-sensitive two-photon fluorescent probe for <i>in vivo</i> nitroreductase imaging. Journal of Materials Chemistry B, 2019, 7, 408-414.	2.9	47

#	Article	IF	CITATIONS
73	Recognition of Exogenous and Endogenous Nitroxyl in Living Cells via a Two-Photon Fluorescent Probe. Analytical Chemistry, 2018, 90, 4641-4648.	3.2	45
74	Red-Light-Responsive Ru Complex Photosensitizer for Lysosome Localization Photodynamic Therapy. ACS Applied Materials & Distribution and Samp; Interfaces, 2021, 13, 19572-19580.	4.0	44
75	NIR photosensitizers activated by \hat{I}^3 -glutamyl transpeptidase for precise tumor fluorescence imaging and photodynamic therapy. Science China Chemistry, 2021, 64, 808-816.	4.2	43
76	Fluorescent pH probes based on boron dipyrromethene dyes. Dyes and Pigments, 2009, 81, 58-62.	2.0	42
77	Highly Selective and Anions Controlled Fluorescent Sensor for Hg2+ in Aqueous Environment. Journal of Fluorescence, 2008, 18, 919-924.	1.3	41
78	Enhanced fluorescent chemosensor for Ag+ in absolute aqueous solution and living cells: An experimental and theoretical study. Analyst, The, 2012, 137, 2107.	1.7	41
79	Intracellular MicroRNA imaging using telomerase-catalyzed FRET ratioflares with signal amplification. Chemical Science, 2019, 10, 7111-7118.	3.7	39
80	MicroRNA Detection with Turnover Amplification via Hybridization-Mediated Staudinger Reduction for Pancreatic Cancer Diagnosis. Journal of the American Chemical Society, 2019, 141, 20490-20497.	6.6	39
81	d-PET-controlled "off-on―Polarity-sensitive Probes for Reporting Local Hydrophilicity within Lysosomes. Scientific Reports, 2016, 6, 35627.	1.6	37
82	A nitroxyl-responsive near-infrared fluorescent chemosensor for visualizing H ₂ 5/NO crosstalk in biological systems. Chemical Communications, 2019, 55, 8583-8586.	2.2	37
83	Lighting-up breast cancer cells by a near-infrared fluorescent probe based on KIAA1363 enzyme-targeting. Chemical Communications, 2017, 53, 4857-4860.	2.2	36
84	Two-channel responsive luminescent chemosensors for dioxygen species: Molecular oxygen, singlet oxygen and superoxide anion. Coordination Chemistry Reviews, 2021, 427, 213575.	9.5	36
85	A singlet oxygen self-reporting photosensitizer for cancer phototherapy. Chemical Science, 2021, 12, 2515-2520.	3.7	36
86	Tuning the photoinduced electron transfer in near-infrared heptamethine cyanine dyes. Tetrahedron Letters, 2005, 46, 4817-4820.	0.7	35
87	<i>In Vivo</i> Coinstantaneous Identification of Hepatocellular Carcinoma Circulating Tumor Cells by Dual-Targeting Magnetic-Fluorescent Nanobeads. Nano Letters, 2021, 21, 634-641.	4.5	34
88	Radical induced quartet photosensitizers with high 1O2 production for in vivo cancer photodynamic therapy. Science China Chemistry, 2021, 64, 488-498.	4.2	34
89	Simultaneous visualization of cysteine/homocysteine and glutathione in living cells and Daphnia magna via dual-signaling fluorescent chemosensor. Dyes and Pigments, 2019, 168, 189-196.	2.0	33
90	Activityâ€Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Imageâ€Guided Surgery. Angewandte Chemie, 2021, 133, 17408-17429.	1.6	33

#	Article	IF	Citations
91	Development of an oxidative dehydrogenation-based fluorescent probe for Cu2+ and its biological imaging in living cells. Analytica Chimica Acta, 2012, 735, 107-113.	2.6	32
92	An Organic Nanotherapeutic Agent Selfâ€Assembled from Cyanine and Cu (II) for Combined Photothermal and Chemodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2101008.	3.9	31
93	Gold nanoparticle-based nano-probe for the colorimetric sensing of Cr ³⁺ and Cr ₂ O ₇ ^{2â°'} by the coordination strategy. Nanoscale, 2017, 9, 19139-19144.	2.8	30
94	Encapsulated Dye/Polymer Nanoparticles Prepared via Miniemulsion Polymerization for Inkjet Printing. ACS Omega, 2018, 3, 7380-7387.	1.6	30
95	An Off–On Two-Photon Carbazole-Based Fluorescent Probe: Highly Targeting and Super-Resolution Imaging of mtDNA. Analytical Chemistry, 2019, 91, 3336-3341.	3.2	30
96	A BODIPYâ€based Fluorescent Probe for Thiophenol. Chinese Journal of Chemistry, 2018, 36, 119-123.	2.6	29
97	Anticancer drug delivery systems based on inorganic nanocarriers with fluorescent tracers. AICHE Journal, 2018, 64, 835-859.	1.8	28
98	Highly Selective Red-Emitting Fluorescent Probe for Imaging Cancer Cells in Situ by Targeting Pim-1 Kinase. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1499-1507.	4.0	28
99	Highly Inoxidizable Heptamethine Cyanine–Glucose Oxidase Conjugate Nanoagent for Combination of Enhanced Photothermal Therapy and Tumor Starvation. Advanced Functional Materials, 2022, 32, .	7.8	28
100	Functional two-photon cationic targeted photosensitizers for deep-seated tumor imaging and therapy. Sensors and Actuators B: Chemical, 2020, 304, 127310.	4.0	27
101	A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. Advanced Healthcare Materials, 2022, 11, e2102017.	3.9	27
102	Accelerated antibacterial red-carbon dots with photodynamic therapy against multidrug-resistant Acinetobacter baumannii. Science China Materials, 2022, 65, 845-854.	3.5	24
103	A Sequential Dualâ€Model Strategy Based on Photoactivatable Metallopolymer for Onâ€Demand Release of Photosensitizers and Anticancer Drugs. Advanced Science, 2021, 8, e2103334.	5.6	24
104	An Activatable AlEgen Probe for Highâ€Fidelity Monitoring of Overexpressed Tumor Enzyme Activity and Its Application to Surgical Tumor Excision. Angewandte Chemie, 2020, 132, 10272-10281.	1.6	23
105	Reversing Multidrug Resistance by Inducing Mitochondrial Dysfunction for Enhanced Chemo-Photodynamic Therapy in Tumor. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45259-45268.	4.0	22
106	Probing Thiophenol Pollutant in Solutions and Cells with BODIPY-Based Fluorescent Probe. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 9303-9309.	1.8	21
107	Lighting-Up Tumor for Assisting Resection via Spraying NIR Fluorescent Probe of Î ³ -Glutamyltranspeptidas. Frontiers in Chemistry, 2018, 6, 485.	1.8	21
108	A Novel Nanobody–Photosensitizer Conjugate for Hypoxia Resistant Photoimmunotherapy. Advanced Functional Materials, 2021, 31, 2103629.	7.8	21

#	Article	IF	Citations
109	Nearâ€Infrared Light Triggered H ₂ Generation for Enhanced Photothermal/Photodynamic Therapy against Hypoxic Tumor. Advanced Healthcare Materials, 2022, 11, e2101449.	3.9	21
110	Lysozyme-targeted ratiometric fluorescent probe for SO2 in living cells. Dyes and Pigments, 2020, 180, 108440.	2.0	20
111	A photosensitizer-inhibitor conjugate for photodynamic therapy with simultaneous inhibition of treatment escape pathways. Biomaterials, 2020, 257, 120262.	5.7	19
112	New Cy5 photosensitizers for cancer phototherapy: a low singlet–triplet gap provides high quantum yield of singlet oxygen. Chemical Science, 2021, 12, 13809-13816.	3.7	19
113	Se-sensitized NIR hot band absorption photosensitizer for anti-Stokes excitation deep photodynamic therapy. Science China Chemistry, 2022, 65, 563-573.	4.2	19
114	Bromo-pentamethine as mitochondria-targeted photosensitizers for cancer cell apoptosis with high efficiency. Dyes and Pigments, 2018, 149, 633-638.	2.0	18
115	NIR-excited superoxide radical procreators to eradicate tumors by targeting the lyso-membrane. Journal of Materials Chemistry B, 2019, 7, 4440-4450.	2.9	18
116	H-Aggregates of Prodrug-Hemicyanine Conjugate for Enhanced Photothermal Therapy and Sequential Hypoxia-Activated Chemotherapy., 2022, 4, 724-732.		18
117	Hypoxia-activatable nano-prodrug for fluorescently tracking drug release in mice. Science China Chemistry, 2021, 64, 499-508.	4.2	17
118	"Internal and External Combined―Nonradiative Decay-Based Nanoagents for Photoacoustic Image-Guided Highly Efficient Photothermal Therapy. ACS Applied Materials & Decay interfaces, 2021, 13, 46353-46360.	4.0	16
119	Benzo[a]phenoselenazine-based NIR photosensitizer for tumor-targeting photodynamic therapy via lysosomal-disruption pathway. Dyes and Pigments, 2019, 170, 107617.	2.0	15
120	Photostable Fluorescent Tracker for Imaging Mitochondria with Super Resolution. Analytical Chemistry, 2019, 91, 15777-15783.	3.2	14
121	NIR-emitting carbon dots for discriminative imaging and photo-inactivation of pathogenic bacteria. Chemical Engineering Journal, 2022, 450, 137384.	6.6	14
122	A proton-activatable aminated-chrysophanol sensitizer for photodynamic therapy. Dyes and Pigments, 2017, 147, 476-483.	2.0	13
123	Ratiometric real-time monitoring of hydroxyapatite–doxorubicin nanotheranostic agents for on-demand tumor targeted chemotherapy. Materials Chemistry Frontiers, 2018, 2, 1791-1798.	3.2	13
124	NIR aza-pentamethine dyes as photosensitizers for photodynamic therapy. Dyes and Pigments, 2020, 177, 108284.	2.0	13
125	Carbon dots inspired by structure-inherent targeting for nucleic acid imaging and localized photodynamic therapy. Sensors and Actuators B: Chemical, 2021, 344, 130322.	4.0	13
126	Photodynamic inheritance from methylene blue to carbon dots against reduction, aggregation, and DNA interference. Science China Materials, 2021, 64, 2325-2336.	3.5	12

#	Article	IF	CITATIONS
127	Red Light-Triggered Polyethylene Glycol Deshielding from Photolabile Cyanine-Modified Mesoporous Silica Nanoparticles for On-Demand Drug Release. ACS Applied Bio Materials, 2020, 3, 8084-8093.	2.3	11
128	A Fluorescence Turn-on Sensor for Hg2+ with a Simple Receptor Available in Sulphide-Rich Environments. Journal of Fluorescence, 2012, 22, 945-951.	1.3	10
129	Inhibiting proton interference in PET chemosensors by tuning the HOMO energy of fluorophores. Sensors and Actuators B: Chemical, 2018, 259, 626-632.	4.0	10
130	Near-infrared fluorescent probe for fast track of cyclooxygenase-2 in Golgi apparatus in cancer cells. Frontiers of Chemical Science and Engineering, 2020, 14, 41-52.	2.3	10
131	A Novel Photosensitizer for Lipid Droplet–Location Photodynamic Therapy. Frontiers in Chemistry, 2021, 9, 701771.	1.8	10
132	A UV-LED excited photoinitiator with low toxicity and low migration for photocurable inks. Dyes and Pigments, 2022, 200, 110133.	2.0	10
133	A sulfur-substituted hemicyanine for cancer photothermal therapy without influence of intracellular viscosity. Science China Chemistry, 2022, 65, 821-828.	4.2	10
134	Revealing the Photodynamic Stress <i>In Situ</i> with a Dual-Mode Two-Photon ¹ O ₂ Fluorescent Probe. ACS Sensors, 2020, 5, 1411-1418.	4.0	9
135	<i>Ex vivo</i> identification of circulating tumor cells in peripheral blood by fluorometric "turn on― aptamer nanoparticles. Chemical Science, 2021, 12, 3314-3321.	3.7	8
136	A benzophenoxazine-dyad as cancer indicator using for fluorescence-guided phototherapy. Sensors and Actuators B: Chemical, 2022, 352, 130990.	4.0	8
137	Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules, 2022, 23, 1733-1744.	2.6	8
138	A photosensitizer with conformational restriction for enhanced photodynamic therapy. Chemical Communications, 2021, 57, 9100-9103.	2.2	7
139	Ibuprofen-derived fluorescence inhibitor of COX-2 for breast cancer imaging, prevention and treatment. Dyes and Pigments, 2021, 190, 109326.	2.0	7
140	Self-Assembly Trigger Signal Amplification for MicroRNA Sensing in Living Cells with GSH-Cleavable Nanoprobes. Industrial & Engineering Chemistry Research, 2020, 59, 20582-20590.	1.8	6
141	Imaging and inhibiting cyclooxygenase-2 using aspirin-based fluorescent reporter for the treatment of breast cancer. Sensors and Actuators B: Chemical, 2021, 329, 129217.	4.0	6
142	Molecular Design of Monochromophore-Based Bifunctional Photosensitizers for Simultaneous Ratiometric Oxygen Reporting and Photodynamic Cancer Therapy. Analytical Chemistry, 2021, 93, 13539-13547.	3.2	5
143	Imaging and Inhibiting: A Dual Function Molecular Flare for Cancer Cells. Analytical Chemistry, 2019, 91, 13501-13507.	3.2	4
144	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie, 2020, 132, 20183-20191.	1.6	4

#	Article	IF	CITATIONS
145	Ultrasound-degradable serum albumin nanoplatform for <i>in situ</i> controlled drug release. Chemical Communications, 2020, 56, 7503-7506.	2.2	4
146	Emerging Design Principle of Nearâ€Infrared Upconversion Sensitizer Based on Mitochondriaâ€Targeted Organic Dye for Enhanced Photodynamic Therapy. Chemistry - A European Journal, 2021, 27, 16707-16715.	1.7	2
147	Lightâ€triggered dePEGylation with decreasing the diameter of hydroxyapatite nanocarriers for enhanced cellular uptake and tumor penetration. Nano Select, 2021, 2, 1954.	1.9	1
148	Nucleic Acid Probe-Based Difunctional Hematology Analysis Kit for Peripheral Blood Cell Analysis. ACS Sensors, 2022, , .	4.0	1