
Andrea G Trentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9556499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Administration of mesenchymal stem cells from adipose tissue at the hip joint of dogs with osteoarthritis: A systematic review. Research in Veterinary Science, 2021, 135, 495-503.	0.9	8
2	Lack of information about umbilical cord blood banking leads to decreased donation rates among Brazilian pregnant women. Cell and Tissue Banking, 2021, 22, 597-607.	0.5	2
3	Human adipose-derived mesenchymal stromal cells from face and abdomen undergo replicative senescence and loss of genetic integrity after long-term culture. Experimental Cell Research, 2021, 406, 112740.	1.2	5
4	FGF2 Stimulates the Growth and Improves the Melanocytic Commitment of Trunk Neural Crest Cells. Cellular and Molecular Neurobiology, 2020, 40, 383-393.	1.7	6
5	HNK1 and Sox10 are present during repair of mandibular bone defects. Biotechnic and Histochemistry, 2020, 95, 619-625.	0.7	0
6	Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy, 2020, 22, 247-260.	0.3	49
7	In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 729-741.	1.3	22
8	Human Dental Pulp Stem Cells in Rat Mandibular Bone Defects. Cells Tissues Organs, 2019, 207, 138-148.	1.3	9
9	Skin wound healing in humans and mice: Challenges in translational research. Journal of Dermatological Science, 2018, 90, 3-12.	1.0	292
10	Distinct features of rabbit and human adipose-derived mesenchymal stem cells: implications for biotechnology and translational research. Stem Cells and Cloning: Advances and Applications, 2018, Volume 11, 43-54.	2.3	10
11	Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery. Journal of Biomaterials Applications, 2018, 33, 422-434.	1.2	42
12	Latin American contributions to the neural crest field. Mechanisms of Development, 2018, 153, 17-29.	1.7	0
13	FGF8 and Shh promote the survival and maintenance of multipotent neural crest progenitors. Mechanisms of Development, 2018, 154, 251-258.	1.7	10
14	Effects of Folic Acid and Homocysteine on the Morphogenesis of Mouse Cephalic Neural Crest Cells In Vitro. Cellular and Molecular Neurobiology, 2017, 37, 371-376.	1.7	12
15	Bentonite modified with zinc enhances aflatoxin B1 adsorption and increase survival of fibroblasts (3T3) and epithelial colorectal adenocarcinoma cells (Caco-2). Journal of Hazardous Materials, 2017, 337, 80-89.	6.5	29
16	Transplantation of Human Skin-Derived Mesenchymal Stromal Cells Improves Locomotor Recovery After Spinal Cord Injury in Rats. Cellular and Molecular Neurobiology, 2017, 37, 941-947.	1.7	29
17	Organophilic treatments of bentonite increase the adsorption of aflatoxin B1 and protect stem cells against cellular damage. Colloids and Surfaces B: Biointerfaces, 2016, 145, 555-561.	2.5	27
18	Neural Crest Stem Cell Cultures: Establishment, Characterization and Potential Use. , 2016, , 111-125.		1

Neural Crest Stem Cell Cultures: Establishment, Characterization and Potential Use. , 2016, , 111-125. 18

Andrea G Trentin

#	Article	IF	CITATIONS
19	Rutin increases neural crest stem cell survival against damage caused by aflatoxin B1. Biotemas, 2015, 28, 1.	0.2	2
20	Comparative Experimental Study of Wound Healing in Mice: Pelnac versus Integra. PLoS ONE, 2015, 10, e0120322.	1.1	37
21	Bentonite protects neural crest stem cells from death caused by aflatoxin B1. Applied Clay Science, 2015, 104, 119-127.	2.6	24
22	Effects of bentonite on different cell types: A brief review. Applied Clay Science, 2015, 105-106, 225-230.	2.6	75
23	Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death. Materials Science and Engineering C, 2015, 55, 530-537.	3.8	24
24	Thyroid Hormone and Astroglia: Endocrine Control of the Neural Environment. Journal of Neuroendocrinology, 2015, 27, 435-445.	1.2	48
25	Temporo-spatial analysis of Osterix, HNK1 and Sox10 during odontogenesis and maxillaries osteogenesis. Tissue and Cell, 2015, 47, 465-470.	1.0	7
26	Histopathology of motor cortex in an experimental focal ischemic stroke in mouse model. Journal of Chemical Neuroanatomy, 2014, 57-58, 1-9.	1.0	7
27	EGF–FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs). Experimental Cell Research, 2014, 327, 37-47.	1.2	29
28	Dermal Substitutes Support the Growth of Human Skin-Derived Mesenchymal Stromal Cells: Potential Tool for Skin Regeneration. PLoS ONE, 2014, 9, e89542.	1.1	38
29	Human Placenta-Derived Mesenchymal Stem Cells Acquire Neural Phenotype Under the Appropriate Niche Conditions. DNA and Cell Biology, 2013, 32, 58-65.	0.9	20
30	The Neural Crest and the Stem Cells of Neural Crest. , 2013, , 157-176.		4
31	Fibroblast Growth Factor 2 Promotes the Self-Renewal of Bipotent Glial Smooth Muscle Neural Crest Progenitors. Stem Cells and Development, 2013, 22, 1241-1251.	1.1	17
32	Flavonoid hesperidin protects neural crest cells from death caused by aflatoxin B ₁ . Cell Biology International, 2013, 37, 181-186.	1.4	17
33	Matrigel supports neural, melanocytic and chondrogenic differentiation of trunk neural crest cells. International Journal of Developmental Biology, 2013, 57, 885-890.	0.3	16
34	The flavonoids hesperidin and rutin promote neural crest cell survival. Cell and Tissue Research, 2012, 350, 305-315.	1.5	34
35	Impaired astrocytic extracellular matrix distribution under congenital hypothyroidism affects neuronal development in vitro. Journal of Neuroscience Research, 2010, 88, 3350-3360.	1.3	11
36	Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential. Experimental Cell Research, 2009, 315, 955-967.	1.2	31

Andrea G Trentin

#	Article	IF	CITATIONS
37	Epidermal Growth Factor (EGF) Promotes the In Vitro Differentiation of Neural Crest Cells to Neurons and Melanocytes. Cellular and Molecular Neurobiology, 2009, 29, 1087-1091.	1.7	44
38	Thyroid Hormone Mediates Syndecan Expression in Rat Neonatal Cerebellum. Cellular and Molecular Neurobiology, 2008, 28, 795-801.	1.7	12
39	Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. Journal of Neuroscience Research, 2008, 86, 3117-3125.	1.3	79
40	Human periodontal ligament: a niche of neural crest stem cells. Journal of Periodontal Research, 2008, 43, 531-536.	1.4	106
41	Capacidade da matriz extracelular da medula óssea de induzir proliferação de células mielóides in vitro no modelo de desnutrição protéica em camundongos. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2008, 44, 493-501.	0.5	1
42	Neural crest progenitors and stem cells. Comptes Rendus - Biologies, 2007, 330, 521-529.	0.1	99
43	Guanine derivatives modulate extracellular matrix proteins organization and improve neuron-astrocyte co-culture. Journal of Neuroscience Research, 2007, 85, 1943-1951.	1.3	21
44	Undersulfation of glycosaminoglycans induced by sodium chlorate treatment affects the progression of C6 rat glioma, in-vivo. Brain Research, 2007, 1131, 29-36.	1.1	5
45	Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38MAPK and JNK1/2 but not of ERK1/2. Archives of Toxicology, 2007, 81, 407-414.	1.9	49
46	Thyroid hormone and astrocyte morphogenesis. Journal of Endocrinology, 2006, 189, 189-197.	1.2	68
47	Evaluation of antimetastatic activity and systemic toxicity of camptothecin-loaded microspheres in mice injected with B16-F10 melanoma cells. Journal of Pharmacy and Pharmaceutical Sciences, 2006, 9, 22-31.	0.9	16
48	Congenital hypothyroidism alters the phosphorylation of ERK1/2 and p38MAPK in the hippocampus of neonatal rats. Developmental Brain Research, 2005, 154, 141-145.	2.1	33
49	Glycosaminoglycans modulate C6 glioma cell adhesion to extracellular matrix components and alter cell proliferation and cell migration. BMC Cell Biology, 2005, 6, 31.	3.0	25
50	Thrombospondin in protein malnutrition induced hypoplasia. Revista De Nutricao, 2005, 18, 727-731.	0.4	4
51	Self-renewal capacity is a widespread property of various types of neural crest precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4495-4500.	3.3	162
52	Enhancement of blood-tumor barrier permeability by Sar-[D-Phe8]des-Arg9BK, a metabolically resistant bradykinin B1 agonist, in a rat C6 glioma model. BMC Neuroscience, 2004, 5, 38.	0.8	11
53	The effects of sub-chronic exposure of Wistar rats to the herbicide Glyphosate-Biocarb®. Toxicology Letters, 2004, 153, 227-232.	0.4	100
54	Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: Effects on astrocyte adhesion. Glia, 2003, 42, 359-369.	2.5	42

ANDREA G TRENTIN

#	Article	IF	CITATIONS
55	Undersulfation of proteoglycans and proteins alter C6 glioma cells proliferation, adhesion and extracellular matrix organization. International Journal of Developmental Neuroscience, 2002, 20, 563-571.	0.7	16
56	Thyroid hormone induces cerebellar astrocytes and C6 glioma cells to secrete mitogenic growth factors. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E1088-E1094.	1.8	50
57	Thyroid hormone deficiency alters extracellular matrix protein expression in rat brain. Developmental Brain Research, 2001, 126, 121-124.	2.1	26
58	Thyroid hormone role in nervous system morphogenesis. Progress in Brain Research, 2001, 132, 41-50.	0.9	28
59	Alterations in proteins of bone marrow extracellular matrix in undernourished mice. Brazilian Journal of Medical and Biological Research, 2000, 33, 889-895.	0.7	35
60	Thyroid hormone acting on astrocytes in culture. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 280-282.	0.7	25
61	Thyroid hormone regulates protein expression in C6 glioma cells. Brazilian Journal of Medical and Biological Research, 1998, 31, 1281-1284.	0.7	11
62	Thyroid hormone induces protein secretion and morphological changes in astroglial cells with an increase in expression of glial fibrillary acidic protein. Journal of Endocrinology, 1997, 154, 167-175.	1.2	66
63	T3 affects cerebellar astrocyte proliferation, GFAP and fibronectin organization. NeuroReport, 1995, 6, 293-296.	0.6	50
64	Thyroid hormone and conditioned medium effects on astroglial cells from hypothyroid and normal rat brain: Factor secretion, cell differentiation, and proliferation. Journal of Neuroscience Research, 1995, 41, 409-417.	1.3	45