
Octavio Galindo-Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9556123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palmitic acid decreases cell migration by increasing RGS2 expression and decreasing SERCA expression. Genetics and Molecular Biology, 2021, 44, e20200279.	0.6	5
2	Impact of cholesterol-pathways on breast cancer development, a metabolic landscape. Journal of Cancer, 2021, 12, 4307-4321.	1.2	17
3	The Increased Expression of Regulator of G-Protein Signaling 2 (RGS2) Inhibits Insulin-Induced Akt Phosphorylation and Is Associated with Uncontrolled Glycemia in Patients with Type 2 Diabetes. Metabolites, 2021, 11, 91.	1.3	7
4	Inverse correlation between levels of glycated haemoglobin and expression levels of SERCA protein in Mexican patients with type 2 diabetes mellitus. Archives of Medical Science, 2020, 16, 1226-1228.	0.4	0
5	Rasal2, highlighting the importance of phosphorylation on function in tumour development. EBioMedicine, 2020, 51, 102606.	2.7	1
6	Role of PI3K/Akt on migration and invasion of MCF10A cells treated with extracellular vesicles from MDA-MB-231 cells stimulated with linoleic acid. Journal of Cell Communication and Signaling, 2019, 13, 235-244.	1.8	13
7	Protein translation associated to PERK arm is a new target for regulation of metainflammation: A connection with hepatocyte cholesterol. Journal of Cellular Biochemistry, 2019, 120, 4158-4171.	1.2	20
8	Ceramide Metabolism Balance, a Multifaceted Factor in Critical Steps of Breast Cancer Development. International Journal of Molecular Sciences, 2018, 19, 2527.	1.8	26
9	Extracellular vesicles from women with breast cancer promote an epithelial-mesenchymal transition-like process in mammary epithelial cells MCF10A. Tumor Biology, 2015, 36, 9649-9659.	0.8	15
10	Extracellular vesicles from MDA-MB-231 breast cancer cells stimulated with linoleic acid promote an EMT-like process in MCF10A cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 91, 299-310.	1.0	51
11	Role of LOXs and COX-2 on FAK activation and cell migration induced by linoleic acid in MDA-MB-231 breast cancer cells. Cellular Oncology (Dordrecht), 2013, 36, 65-77.	2.1	31
12	Elevated Concentration of Microvesicles Isolated from Peripheral Blood in Breast Cancer Patients. Archives of Medical Research, 2013, 44, 208-214.	1.5	120
13	Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells. Cell Biology and Toxicology, 2013, 29, 303-319.	2.4	24
14	Arachidonic acid induces an increase of βâ€1,4â€galactosyltransferase I expression in MDAâ€MBâ€231 breast cancer cells. Journal of Cellular Biochemistry, 2012, 113, 3330-3341.	1.2	16