Gatis Bazbauers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/955515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews, 2019, 101, 440-452.	16.4	82
2	System dynamics model for analyzing effects of eco-design policy on packaging waste management system. Resources, Conservation and Recycling, 2014, 87, 175-190.	10.8	80
3	Economic Assessment of Biomethane Supply System based on Natural Gas Infrastructure. Energy Procedia, 2015, 72, 71-78.	1.8	63
4	Sustainable development modelling for the energy sector. Journal of Cleaner Production, 2014, 63, 134-142.	9.3	38
5	System dynamics model of a biotechonomy. Journal of Cleaner Production, 2018, 172, 4018-4032.	9.3	22
6	Modelling energy production flexibility: system dynamics approach. Energy Procedia, 2018, 147, 503-509.	1.8	21
7	Linking energy efficiency policies toward 4th generation district heating system. Energy, 2021, 234, 121245.	8.8	17
8	Role of Vehicle-to-grid Systems for Electric Load Shifting and Integration of Intermittent Sources in Latvian Power System. Energy Procedia, 2015, 72, 156-162.	1.8	15
9	District Heating Regulation: Parameters for the Benchmarking Model. Energy Procedia, 2016, 95, 401-407.	1.8	15
10	Support Mechanisms for Biomethane Production and Supply. Energy Procedia, 2017, 113, 304-310.	1.8	14
11	Life Cycle Assessment of Renewable Energy Alternatives for Replacement of Natural Gas in Building Material Industry. Energy Procedia, 2015, 72, 127-134.	1.8	13
12	Energy efficiency policy analysis using socio-technical approach and system dynamics. Case study of lighting in Latvia's households. Energy Policy, 2017, 109, 545-554.	8.8	13
13	System dynamics model of research, innovation and education system for efficient use of bio-resources. Energy Procedia, 2017, 128, 350-357.	1.8	11
14	Why Bioeconomy is Actual for Latvia. Research Achievements in Institute of Energy Systems and Environment. Energy Procedia, 2017, 113, 460-465.	1.8	10
15	Optimization of bio-ethanol autothermal reforming and carbon monoxide removal processes. Journal of Power Sources, 2009, 193, 9-16.	7.8	9
16	Unintended Effects of Energy Efficiency Policy: Lessons Learned in the Residential Sector. Energies, 2021, 14, 7792.	3.1	9
17	Algorithm for calculation of district heating tariff benchmark. Energy Procedia, 2017, 128, 445-452.	1.8	8
18	Biomethane Supply Support Policy: System Dynamics Approach. Energy Procedia, 2016, 95, 393-400.	1.8	7

GATIS BAZBAUERS

#	Article	IF	CITATIONS
19	The role of forest biotechonomy industry in the macroeconomic development model of the national economy of Latvia: a system dynamics approach. Energy Procedia, 2017, 128, 32-37.	1.8	6
20	Novel tools to study socio-technical transitions in energy systems. Energy Procedia, 2017, 128, 418-422.	1.8	5
21	District Heating Tariff Component Analysis for Tariff Benchmarking Model. Energy Procedia, 2017, 113, 104-110.	1.8	4
22	Integrated MARKAL-EFOM System (TIMES) Model for Energy Sector Modelling. , 2020, , .		4
23	Production of Renewable Insulation Material – New Business Model of Bioeconomy for Clean Energy Transition. Environmental and Climate Technologies, 2021, 25, 1061-1074.	1.4	4
24	Influence of Temperature and Pressure Change on Adiabatic and Isothermal Methanation Processes. Environmental and Climate Technologies, 2012, 9, 22-27.	0.2	3
25	The role of forest biotechonomy industry in the macroeconomic development model of the national economy of Latvia: an in-depth insight and results. Energy Procedia, 2018, 147, 25-33.	1.8	3
26	Adaptation of TIMES Model Structure to Industrial, Commercial and Residential Sectors. Environmental and Climate Technologies, 2020, 24, 392-405.	1.4	3
27	Decarbonisation Pathways of Industry in TIMES Model. Environmental and Climate Technologies, 2021, 25, 318-330.	1.4	2
28	Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production. Environmental and Climate Technologies, 2013, 12, 10-14.	0.2	2
29	Passenger Transport Shift to Green Mobility – Assessment Using TIMES Model. Environmental and Climate Technologies, 2022, 26, 341-356.	1.4	2
30	Correlation analysis for district heating tariff benchmarking model. , 2016, , .		1
31	Application of EnergyPlan modelling tool for comparative analysis of selected energy policies in case of Latvia. , 2019, , .		1
32	Influence of wind power production on electricity market price. Environmental and Climate Technologies, 2020, 24, 472-482.	1.4	1
33	Relation between Electric Vehicles and Operation Performance of Power Grid. Environmental and Climate Technologies, 2021, 25, 1142-1151.	1.4	Ο
34	Modelling of Institutional Capacity within Study of Energy Transition Dynamics. Environmental and Climate Technologies, 2021, 25, 1193-1204.	1.4	0
35	Mapping of New Business Models in Domains of Technologies and Energy for Modelling of Dynamics of Clean Energy Transition. Environmental and Climate Technologies, 2021, 25, 1152-1164.	1.4	0

36 Synergy between solar energy and electric transport. , 2021, , .