Mariette M Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9555148/publications.pdf

Version: 2024-02-01

197 papers

6,827 citations

45 h-index ⁸²⁵⁴⁷ **72**

214 all docs

214 docs citations

times ranked

214

6285 citing authors

g-index

#	Article	IF	CITATIONS
1	Some new aspects related to the synthesis of <i>meso</i> â€substituted porphyrins. Journal of Heterocyclic Chemistry, 1991, 28, 635-640.	2.6	253
2	Photoacoustic Measurements of Porphyrin Triplet-State Quantum Yields and Singlet-Oxygen Efficiencies. Chemistry - A European Journal, 1998, 4, 2299-2307.	3.3	237
3	First Cp*-Functionalized N-Heterocyclic Carbene and Its Coordination to Iridium. Study of the Catalytic Properties. Organometallics, 2008, 27, 1305-1309.	2.3	187
4	Heavy-atom effects on metalloporphyrins and polyhalogenated porphyrins. Chemical Physics, 2002, 280, 177-190.	1.9	170
5	Mechanisms of Singletâ€Oxygen and Superoxideâ€Ion Generation by Porphyrins and Bacteriochlorins and their Implications in Photodynamic Therapy. Chemistry - A European Journal, 2010, 16, 9273-9286.	3.3	156
6	Iron(II) Complexes Bearing Chelating Cyclopentadienyl-N-Heterocyclic Carbene Ligands as Catalysts for Hydrosilylation and Hydrogen Transfer Reactions. Organometallics, 2010, 29, 2777-2782.	2.3	149
7	Highly active phosphite gold(i) catalysts for intramolecular hydroalkoxylation, enyne cyclization and furanyne cyclization. Chemical Communications, 2014, 50, 4937.	4.1	143
8	Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coordination Chemistry Reviews, 2019, 395, 63-85.	18.8	141
9	Synthesis of binaphthyl based phosphine and phosphite ligands. Chemical Society Reviews, 2013, 42, 6990.	38.1	138
10	Metalloporphyrins: Bioinspired Oxidation Catalysts. ACS Catalysis, 2018, 8, 10784-10808.	11.0	122
		11.2	_
11	Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chemistry - A European Journal, 2014, 20, 5346-5357.	3.3	105
11	Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability		
	Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chemistry - A European Journal, 2014, 20, 5346-5357. Mechanistic studies on metalloporphyrin epoxidation reactions with hydrogen peroxide: evidence for	3.3	105
12	Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chemistry - A European Journal, 2014, 20, 5346-5357. Mechanistic studies on metalloporphyrin epoxidation reactions with hydrogen peroxide: evidence for two active oxidative species. Journal of Catalysis, 2005, 234, 76-87. New Halogenated Waterâ€Soluble Chlorin and Bacteriochlorin as Photostable PDT Sensitizers: Synthesis, Spectroscopy, Photophysics, and inâ€vitro Photosensitizing Efficacy. ChemMedChem, 2010, 5,	3.3 6.2	103
12	Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chemistry - A European Journal, 2014, 20, 5346-5357. Mechanistic studies on metalloporphyrin epoxidation reactions with hydrogen peroxide: evidence for two active oxidative species. Journal of Catalysis, 2005, 234, 76-87. New Halogenated Waterâ€oluble Chlorin and Bacteriochlorin as Photostable PDT Sensitizers: Synthesis, Spectroscopy, Photophysics, and inâ€vitro Photosensitizing Efficacy. ChemMedChem, 2010, 5, 1770-1780. State of the art in the development of biomimetic oxidation catalysts. Journal of Molecular Catalysis	3.3 6.2 3.2	103 98
12 13 14	Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chemistry - A European Journal, 2014, 20, 5346-5357. Mechanistic studies on metalloporphyrin epoxidation reactions with hydrogen peroxide: evidence for two active oxidative species. Journal of Catalysis, 2005, 234, 76-87. New Halogenated Waterâ€Soluble Chlorin and Bacteriochlorin as Photostable PDT Sensitizers: Synthesis, Spectroscopy, Photophysics, and inâ€vitro Photosensitizing Efficacy. ChemMedChem, 2010, 5, 1770-1780. State of the art in the development of biomimetic oxidation catalysts. Journal of Molecular Catalysis A, 1996, 113, 209-221. Nâ€Heterocyclic Carbene Complexes of Nickel as Efficient Catalysts for Hydrosilylation of Carbonyl	3.3 6.2 3.2 4.8	105 103 98 97
12 13 14	Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chemistry - A European Journal, 2014, 20, 5346-5357. Mechanistic studies on metalloporphyrin epoxidation reactions with hydrogen peroxide: evidence for two active oxidative species. Journal of Catalysis, 2005, 234, 76-87. New Halogenated Waterâ€Soluble Chlorin and Bacteriochlorin as Photostable PDT Sensitizers: Synthesis, Spectroscopy, Photophysics, and inâ€vitro Photosensitizing Efficacy. ChemMedChem, 2010, 5, 1770-1780. State of the art in the development of biomimetic oxidation catalysts. Journal of Molecular Catalysis A, 1996, 113, 209-221. Nâ€Heterocyclic Carbene Complexes of Nickel as Efficient Catalysts for Hydrosilylation of Carbonyl Derivatives. Advanced Synthesis and Catalysis, 2012, 354, 2613-2618. Direct Synthesis of Iron(0) N-Heterocyclic Carbene Complexes by Using Fe⟨sub⟩3⟨sub⟩(CO)⟨sub⟩12⟨sub⟩ and Their Application in Reduction of Carbonyl Groups.	3.3 6.2 3.2 4.8	103 98 97

#	Article	IF	Citations
19	Improved Syntheses of 5,10,15,20-Tetrakisaryl- and Tetrakisalkylporphyrins. Heterocycles, 1996, 43, 1423.	0.7	80
20	Singlet oxygen quantum yields from halogenated chlorins: potential new photodynamic therapy agents. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 138, 147-157.	3.9	80
21	Chemoselective hydrogenation of nitroarenes and deoxygenation of pyridine N-oxides with H2 catalyzed by MoO2Cl2. Tetrahedron Letters, 2009, 50, 949-952.	1.4	80
22	Combined effects of singlet oxygen and hydroxyl radical in photodynamic therapy with photostable bacteriochlorins: Evidence from intracellular fluorescence and increased photodynamic efficacy in vitro. Free Radical Biology and Medicine, 2012, 52, 1188-1200.	2.9	80
23	Unprecedented synthesis of iron–NHC complexes by C–H activation of imidazolium salts. Mild catalysts for reduction of sulfoxides. Chemical Communications, 2012, 48, 4944.	4.1	78
24	Immobilized Catalysts for Hydroformylation Reactions: A Versatile Tool for Aldehyde Synthesis. European Journal of Organic Chemistry, 2012, 2012, 6309-6320.	2.4	74
25	Synthesis, Photophysical Studies and Anticancer Activity of a New Halogenated Waterâ€Soluble Porphyrin. Photochemistry and Photobiology, 2007, 83, 897-903.	2.5	73
26	A comparative study of water soluble 5,10,15,20-tetrakis(2,6-dichloro-3-sulfophenyl)porphyrin and its metal complexes as efficient sensitizers for photodegradation of phenols. Photochemical and Photobiological Sciences, 2005, 4, 617.	2.9	72
27	Conjugating biomaterials with photosensitizes: advancers and perspectives for photodynamic antimicrobial chemotherapy. Photochemical and Photobiological Sciences, 2020, 19, 445-461.	2.9	72
28	New Halogenated Phenylbacteriochlorins and Their Efficiency in Singlet-Oxygen Sensitization. Journal of Physical Chemistry A, 2002, 106, 3787-3795.	2.5	71
29	Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications. Coordination Chemistry Reviews, 2017, 333, 82-107.	18.8	66
30	Metal-assisted reactions. Part 22. Synthesis of perhalogenated prophyrins and their use as oxidation catalysts. Tetrahedron Letters, 1991, 32, 1355-1358.	1.4	64
31	Immobilization of halogenated porphyrins and their copper complexes in MCM-41: Environmentally friendly photocatalysts for the degradation of pesticides. Applied Catalysis B: Environmental, 2010, 100, 1-9.	20.2	64
32	Biodistribution and Photodynamic Efficacy of a Waterâ€Soluble, Stable, Halogenated Bacteriochlorin against Melanoma. ChemMedChem, 2011, 6, 465-475.	3.2	63
33	Inorganic helping organic: recent advances in catalytic heterogeneous oxidations by immobilised tetrapyrrolic macrocycles in micro and mesoporous supports. RSC Advances, 2013, 3, 22774.	3.6	62
34	Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS ONE, 2017, 12, e0185984.	2.5	59
35	Antibacterial Photodynamic Inactivation of Antibiotic-Resistant Bacteria and Biofilms with Nanomolar Photosensitizer Concentrations. ACS Infectious Diseases, 2020, 6, 1517-1526.	3.8	56
36	Photooxidation of 4-chlorophenol sensitised by iron meso-tetrakis(2,6-dichloro-3-sulfophenyl)porphyrin in aqueous solution. Photochemical and Photobiological Sciences, 2004, 3, 200-204.	2.9	55

#	Article	IF	CITATIONS
37	Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides. Journal of Hazardous Materials, 2012, 233-234, 79-88.	12.4	54
38	Synthesis, Spectra and Photophysics of some Free Base Tetrafluoroalkyl and Tetrafluoroaryl Porphyrins with Potential Applications in Imaging¶. Photochemistry and Photobiology, 2002, 75, 249.	2.5	52
39	Novel porphyrins and a chlorin as efficient singlet oxygen photosensitizers for photooxidation of naphthols or phenols to quinones. Perkin Transactions II RSC, 2000, , 2441-2447.	1.1	51
40	Epoxidation reactions with hydrogen peroxide activated by a novel heterogeneous metalloporphyrin catalyst. Journal of Molecular Catalysis A, 2006, 256, 321-323.	4.8	51
41	Manganese Nâ€Heterocyclic Carbene Complexes for Catalytic Reduction of Ketones with Silanes. ChemCatChem, 2018, 10, 2734-2740.	3.7	51
42	Biomimetic oxidation of organosulfur compounds with hydrogen peroxide catalyzed by manganese porphyrins. Applied Catalysis A: General, 2012, 439-440, 51-56.	4.3	50
43	An insight into solvent-free diimide porphyrin reduction: a versatile approach for meso-aryl hydroporphyrin synthesis. Green Chemistry, 2012, 14, 1666.	9.0	50
44	A new look into the rothemund <i>meso</i> àêŧetraalkyl and tetraarylporphyrin synthesis. Journal of Heterocyclic Chemistry, 1985, 22, 931-933.	2.6	48
45	Tissue Uptake Study and Photodynamic Therapy of Melanomaâ€Bearing Mice with a Nontoxic, Effective Chlorin. ChemMedChem, 2011, 6, 1715-1726.	3.2	47
46	Photodegradation of atrazine and ametryn with visible light using water soluble porphyrins as sensitizers. Environmental Chemistry Letters, 2007, 5, 29-33.	16.2	46
47	Synthesis of amphiphilic sulfonamide halogenated porphyrins: MALDI-TOFMS characterization and evaluation of 1-octanol/water partition coefficients. Tetrahedron, 2008, 64, 5132-5138.	1.9	45
48	Amphiphilic meso(sulfonate ester fluoroaryl)porphyrins: refining the substituents of porphyrin derivatives for phototherapy and diagnostics. Tetrahedron, 2012, 68, 8767-8772.	1.9	44
49	Ecofriendly Porphyrin Synthesis by using Water under Microwave Irradiation. ChemSusChem, 2014, 7, 2821-2824.	6.8	44
50	Optical detection of amine vapors using ZnTriad porphyrin thin films. Sensors and Actuators B: Chemical, 2015, 210, 28-35.	7.8	44
51	Phthalocyanine Labels for Near-Infrared Fluorescence Imaging of Solid Tumors. Journal of Medicinal Chemistry, 2016, 59, 4688-4696.	6.4	43
52	Rhodium-diphosphine catalysts for the hydroformylation of styrene: the influence of the excess of ligand and the chelate ring size on the reaction selectivity. Journal of Molecular Catalysis A, 1999, 143, 111-122.	4.8	42
53	Hydrogen Peroxide and Metalloporphyrins in Oxidation Catalysis: Old Dogs with Some New Tricks. ChemCatChem, 2018, 10, 3615-3635.	3.7	42
54	Synthesis and photophysical properties of amphiphilic halogenated bacteriochlorins: new opportunities for photodynamic therapy of cancer. Journal of Porphyrins and Phthalocyanines, 2009, 13, 567-573.	0.8	40

#	Article	lF	Citations
55	Dehydrogenative silylation of alcohols catalysed by half-sandwich iron N-heterocyclic carbene complexes. Journal of Organometallic Chemistry, 2015, 775, 173-177.	1.8	40
56	Intramolecular Charge Transfer ofp-(Dimethylamino)benzethyne:Â A Case of Nonfluorescent ICT State. Journal of Physical Chemistry A, 2001, 105, 10025-10030.	2.5	38
57	Improved biodistribution, pharmacokinetics and photodynamic efficacy using a new photostable sulfonamide bacteriochlorin. MedChemComm, 2012, 3, 502.	3.4	38
58	Halogenated meso-phenyl Mn(III) porphyrins as highly efficient catalysts for the synthesis of polycarbonates and cyclic carbonates using carbon dioxide and epoxides. Journal of Molecular Catalysis A, 2016, 423, 489-494.	4.8	38
59	Size and ability do matter! Influence of acidity and pore size on the synthesis of hindered halogenated meso-phenyl porphyrins catalysed by porous solid oxides. Chemical Communications, 2014, 50, 6571-6573.	4.1	37
60	Towards tuning PDT relevant photosensitizer properties: comparative study for the free and Zn ²⁺ coordinated <i>meso</i> -tetrakis[2,6-difluoro-5-(<i>N</i> -methylsulfamylo)phenyl]porphyrin. Journal of Coordination Chemistry, 2015, 68, 3116-3134.	2.2	37
61	Photodynamic disinfection and its role in controlling infectious diseases. Photochemical and Photobiological Sciences, 2021, 20, 1497-1545.	2.9	37
62	Photoinactivation of microorganisms with sub-micromolar concentrations of imidazolium metallophthalocyanine salts. European Journal of Medicinal Chemistry, 2019, 184, 111740.	5.5	36
63	A membrane-bound HIPIP type center in the thermohalophileRhodothermus marinus. FEBS Letters, 1994, 352, 327-330.	2.8	35
64	First iron-catalyzed guanylation of amines: a simple and highly efficient protocol to guanidines. Tetrahedron Letters, 2012, 53, 5156-5158.	1.4	35
65	Metal-assisted reactions. Part 21. Epoxidation of alkenes catalysed by manganese-porphyrins: the effects of various oxidatively-stable ligands and bases. Journal of the Chemical Society Perkin Transactions 1, 1991, , 645.	0.9	34
66	Synthesis of New Metalloporphyrin Triads: Efficient and Versatile Tripod Optical Sensor for the Detection of Amines. Inorganic Chemistry, 2011, 50, 7916-7918.	4.0	34
67	Hybrid Metalloporphyrin Magnetic Nanoparticles as Catalysts for Sequential Transformation of Alkenes and CO ₂ into Cyclic Carbonates. ChemCatChem, 2018, 10, 2792-2803.	3.7	34
68	Avoiding ventilator-associated pneumonia: Curcumin-functionalized endotracheal tube and photodynamic action. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22967-22973.	7.1	34
69	Catalytic oxidative degradation of s-triazine and phenoxyalkanoic acid based herbicides with metalloporphyrins and hydrogen peroxide: Identification of two distinct reaction schemes. Journal of Molecular Catalysis A, 2009, 297, 35-43.	4.8	33
70	Metalloporphyrin triads: Synthesis and photochemical characterization. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242, 59-66.	3.9	33
71	On the singlet states of porphyrins, chlorins and bacteriochlorins and their ability to harvest red/infrared light. Photochemical and Photobiological Sciences, 2012, 11, 1233-1238.	2.9	32
72	Reduction of Ketones with Silanes Catalysed by a Cyclopentadienyl-Functionalised N-Heterocyclic Iron Complex. Catalysis Letters, 2013, 143, 1061-1066.	2.6	32

#	Article	IF	CITATIONS
73	Synthesis of <i>meso </i> -substituted porphyrins using sustainable chemical processes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 45-60.	0.8	32
74	Porphyrin-Loaded Lignin Nanoparticles Against Bacteria: A Photodynamic Antimicrobial Chemotherapy Application. Frontiers in Microbiology, 2020, 11, 606185.	3.5	32
75	Tetrapyrrolic Macrocycles: Potentialities in Medical Imaging Technologies. Current Organic Synthesis, 2014, 11, 127-140.	1.3	32
76	Rhodium/tris-binaphthyl chiral monophosphite complexes: Efficient catalysts for the hydroformylation of disubstituted aryl olefins. Journal of Organometallic Chemistry, 2012, 698, 28-34.	1.8	31
77	Cationic Half-Sandwich Iron(II) and Iron(III) Complexes with N-Heterocyclic Carbene Ligands. Organometallics, 2014, 33, 5670-5677.	2.3	31
78	Energy transfer from fluoreneâ€based conjugated polyelectrolytes to onâ€chain and selfâ€assembled porphyrin units. Journal of Polymer Science Part A, 2012, 50, 1408-1417.	2.3	30
79	New hybrid materials based on halogenated metalloporphyrins for enhanced visible light photocatalysis. RSC Advances, 2015, 5, 93252-93261.	3.6	30
80	Biologically Inspired and Magnetically Recoverable Copper Porphyrinic Catalysts: A Greener Approach for Oxidation of Hydrocarbons with Molecular Oxygen. Advanced Functional Materials, 2016, 26, 3359-3368.	14.9	30
81	Oxidation of î"4- and î"5-Steroids with Hydrogen Peroxide Catalyzed by Porphyrin Complexes of Mnllland Felll. European Journal of Organic Chemistry, 2004, 2004, 4778-4787.	2.4	29
82	Dual Rhâ^'Ru Catalysts for Reductive Hydroformylation of Olefins to Alcohols. ChemSusChem, 2018, 11, 2310-2314.	6.8	29
83	Photoacoustic Measurement of Electron Injection Efficiencies and Energies from Excited Sensitizer Dyes into Nanocrystalline TiO ₂ Films. Journal of the American Chemical Society, 2008, 130, 8876-8877.	13.7	28
84	Enhanced Cellular Uptake and Photodynamic Effect with Amphiphilic Fluorinated Porphyrins: The Role of Sulfoester Groups and the Nature of Reactive Oxygen Species. International Journal of Molecular Sciences, 2020, 21, 2786.	4.1	27
85	NMR and X-ray diffraction studies of the complexation of D-($\hat{a}\in$ ")quinic acid with tungsten(vi) and molybdenum(vi). Dalton Transactions RSC, 2002, , 2126-2131.	2.3	25
86	Singletâ^'Singlet Energy Transfer in Self-Assembled Systems of the Cationic with Oppositely Charged Porphyrins. Journal of Physical Chemistry B, 2009, 113, 16093-16100.	2.6	25
87	5,10,15,20-Tetrakisaryl- and 2,3,7,8,12,13,17, 18-octahalogeno-5,10,15,20-tetrakisarylporphyrins and their metal complexes as catalysts in hypochlorite epoxidations. Journal of the Chemical Society Perkin Transactions 1, 1994, , 2053.	0.9	24
88	The quest for biocompatible phthalocyanines for molecular imaging: Photophysics, relaxometry and cytotoxicity studies. Journal of Inorganic Biochemistry, 2016, 154, 50-59.	3.5	24
89	Translating phototherapeutic indices from in vitro to in vivo photodynamic therapy with bacteriochlorins. Lasers in Surgery and Medicine, 2018, 50, 451-459.	2.1	24
90	A biocompatible redox MRI probe based on a Mn(<scp>ii</scp>)/Mn(<scp>iii</scp>) porphyrin. Dalton Transactions, 2019, 48, 3249-3262.	3.3	24

#	Article	IF	Citations
91	New Binaphthyl-based <i>C</i> 3-symmetric Chiral Hemilabile Monophosphite Ligands: Synthesis and Characterization of Their Platinum Complexes. Chemistry Letters, 2009, 38, 844-845.	1.3	23
92	Synthesis of a new ¹⁸ F labeled porphyrin for potential application in positron emission tomography. In vivo imaging and cellular uptake. RSC Advances, 2015, 5, 99540-99546.	3.6	23
93	Supported metalloporphyrins as reusable catalysts for the degradation of antibiotics: Synthesis, characterization, activity and ecotoxicity studies. Applied Catalysis B: Environmental, 2021, 282, 119556.	20.2	23
94	Rhodium(I) N-Heterocyclic Carbene Complexes as Catalysts for Hydroformylation of Olefins: An Overview. Current Organic Synthesis, 2011, 8, 764-775.	1.3	23
95	Diastereoselective hydroformylation of Δ4-steroids with rhodium–phosphite catalysts. Tetrahedron: Asymmetry, 2001, 12, 1083-1087.	1.8	22
96	Chelating bis-N-heterocyclic carbene complexes of iron(<scp>ii</scp>) containing bipyridyl ligands as catalyst precursors for oxidation of alcohols. Dalton Transactions, 2016, 45, 13541-13546.	3.3	22
97	Reusable Catalysts for Hydroformylationâ€Based Reactions. European Journal of Inorganic Chemistry, 2021, 2021, 2294-2324.	2.0	22
98	Rhodium catalyzed hydroformylation of kaurane derivatives: A route to new diterpenes with potential bioactivity. Applied Catalysis A: General, 2008, 340, 212-219.	4.3	21
99	Hydroformylation of hindered double bonds of natural products with rhodium catalysts: The effect of 3-acetoxy substituent. Journal of Molecular Catalysis A, 2007, 275, 121-129.	4.8	20
100	Unsymmetrical porphyrins: the role of meso-substituents on their physical properties. Journal of Porphyrins and Phthalocyanines, 2012, 16, 290-296.	0.8	20
101	A new facile synthesis of steroid dimers containing 17,17′-dicarboxamide spacers. Tetrahedron Letters, 2013, 54, 2763-2765.	1.4	20
102	Microwave irradiation as a sustainable tool for catalytic carbonylation reactions. Inorganica Chimica Acta, 2017, 455, 364-377.	2.4	20
103	Molecular-based selection of porphyrins towards the sensing of explosives in the gas phase. Sensors and Actuators B: Chemical, 2018, 260, 116-124.	7.8	20
104	Synthesis of new bis-BINOL-2,2′-ethers and bis-H8BINOL-2,2′-ethers evaluation of their Titanium complexes in the asymmetric ethylation of benzaldehyde. Tetrahedron, 2010, 66, 743-749.	1.9	19
105	Selective Reduction of Nitroarenes with Silanes Catalyzed by Nickel Nâ€Heterocyclic Carbene Complexes. ChemCatChem, 2017, 9, 3073-3077.	3.7	19
106	A recyclable hybrid manganese(III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen. Journal of Porphyrins and Phthalocyanines, 2018, 22, 331-341.	0.8	19
107	Advanced Mechanochemistry Device for Sustainable Synthetic Processes. ACS Omega, 2020, 5, 10868-10877.	3.5	19
108	Immobilization of 5,10,15,20-tetrakis-(2-fluorophenyl)porphyrin into MCM-41 and NaY: Routes toward photodegradation of pesticides. Pure and Applied Chemistry, 2009, 81, 2025-2033.	1.9	18

#	Article	IF	CITATIONS
109	Dehydrogenative coupling of aromatic thiols with Et ₃ SiH catalysed by N-heterocyclic carbene nickel complexes. Dalton Transactions, 2014, 43, 853-858.	3.3	18
110	Solventless metallation of low melting porphyrins synthesized by the water/microwave method. RSC Advances, 2015, 5, 64902-64910.	3.6	18
111	Functionalization of indole at C-5 or C-7 via palladium-catalysed double carbonylation. A facile synthesis of indole ketocarboxamides and carboxamide dimers. Tetrahedron, 2016, 72, 247-256.	1.9	18
112	Phase transitions and self-assembly in meso-tetrakis(undecyl)porphyrin. Supramolecular Science, 1997, 4, 241-246.	0.7	17
113	Iridium complexes with new 1,2-dithioether chiral ligands containing a rigid cyclic backbone. Application in homogeneous catalytic asymmetric hydrogenation â€. Journal of the Chemical Society Dalton Transactions, 1998, , 3517-3522.	1.1	17
114	Synthesis of Ortho-alkoxy-aryl Carboxamides via Palladium-Catalyzed Aminocarbonylation. Synthetic Communications, 2009, 39, 1534-1548.	2.1	17
115	Systematic study on the catalytic synthesis of unsaturated 2-ketocarboxamides: palladium-catalyzed double carbonylation of 1-iodocyclohexene. Tetrahedron, 2012, 68, 204-207.	1.9	17
116	Asymmetric Hydrovinylation and Hydrogenation with Metal Complexes of <i>C</i> ₃ ‧ymmetric Trisâ€Binaphthyl Monophosphites. European Journal of Inorganic Chemistry, 2014, 2014, 1034-1041.	2.0	17
117	Oneâ€Step Synthesis of Dicarboxamides through Pdâ€Catalysed Aminocarbonylation with Diamines as Nâ€Nucleophiles. European Journal of Organic Chemistry, 2015, 2015, 1840-1847.	2.4	17
118	Photophysical and Antibacterial Properties of Porphyrins Encapsulated inside Acetylated Lignin Nanoparticles. Antibiotics, 2021, 10, 513.	3.7	17
119	Oxidative Degradation of Pharmaceuticals: The Role of Tetrapyrrole-Based Catalysts. Catalysts, 2021, 11, 1335.	3.5	17
120	Asymmetric transfer hydrogenation of acrylic acids catalyzed by rhodium(I) complexes of diphosphine ligands. Journal of Organometallic Chemistry, 1998, 553, 199-204.	1.8	16
121	Synthesis, reactivity and catalytic properties of rhodium complexes of (R,R)-1-benzyl-3,4-dithioetherpyrrolidines. Inorganica Chimica Acta, 1999, 295, 64-70.	2.4	16
122	Evidence of a rhodium catalytic species containing a bridging 1,2-diphosphine in styrene hydroformylation. Journal of the Chemical Society Dalton Transactions, 1999, , 3245-3251.	1.1	16
123	Synthesis and biological distribution study of a new carbon-11 labeled porphyrin for PET imaging. Photochemical and biological characterization of the non-labeled porphyrin. Journal of Porphyrins and Phthalocyanines, 2015, 19, 946-955.	0.8	16
124	Solventless Coupling of Epoxides and CO2 in Compressed Medium Catalysed by Fluorinated Metalloporphyrins. Catalysts, 2017, 7, 210.	3.5	16
125	Photoacoustic generation of intense and broadband ultrasound pulses with functionalized carbon nanotubes. Nanoscale, 2020, 12, 20831-20839.	5.6	16
126	Characterization of isomeric cationic porphyrins with \hat{l}^2 -pyrrolic substituents by electrospray mass spectrometry: The singular behavior of a potential virus photoinactivator. Journal of the American Society for Mass Spectrometry, 2007, 18, 218-225.	2.8	15

#	Article	IF	Citations
127	Palladium-catalysed reactions of 8-hydroxy- and 8-benzyloxy-5,7-diiodoquinoline under aminocarbonylation conditions. Tetrahedron, 2011, 67, 2402-2406.	1.9	15
128	A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst. Molecules, 2017, 22, 741.	3.8	15
129	A Green Protocol for Microwave-Assisted Extraction of Volatile Oil Terpenes from Pterodon emarginatus Vogel. (Fabaceae). Molecules, 2018, 23, 651.	3.8	14
130	Binol derivative ligand immobilized onto silica: Alkyl-cyanohydrin synthesis via sequential hydroformylation/heterogeneous cyanosilylation reactions. Catalysis Today, 2013, 218-219, 99-106.	4.4	13
131	Cost-efficient method for unsymmetrical meso-aryl porphyrins and iron oxide-porphyrin hybrids prepared thereof. Dalton Transactions, 2016, 45, 16211-16220.	3.3	13
132	Donor Functionalized Iron(II) Nâ€Heterocyclic Carbene Complexes in Transfer Hydrogenation Reactions. European Journal of Inorganic Chemistry, 2021, 2021, 22-29.	2.0	13
133	Rhodiumâ€Catalysed Tandem Hydroformylation/Arylation Reaction with Boronic Acids. Advanced Synthesis and Catalysis, 2014, 356, 1223-1228.	4.3	12
134	Highly efficient Rh(I)/tris-binaphthyl monophosphite catalysts for hydroformylation of sterically hindered alkyl olefins. Journal of Molecular Catalysis A, 2016, 416, 73-80.	4.8	12
135	Synergic dual phototherapy: Cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. Journal of Photochemistry and Photobiology B: Biology, 2022, 233, 112499.	3.8	12
136	Synthesis of vinylated 5,10,15,20-tetraphenylporphyrins via Heck-type coupling reaction and their photophysical properties. Perkin Transactions II RSC, 2002, , 1583-1588.	1.1	11
137	Hydroformylation: a versatile tool for the synthesis of new Î ² -formyl-metalloporphyrins. Tetrahedron Letters, 2003, 44, 5593-5595.	1.4	11
138	Enantioselective ethylation of aromatic aldehydes catalysed by titanium(IV) $\hat{a}\in \text{bis-BINOLate-}2\hat{a}\in \text{-}2,2\hat{a}\in \text{-}3$ -propylether complexes: An inside view of the catalytic active species. Journal of Molecular Catalysis A, 2010, 325, 91-97.	4.8	11
139	Routes to synthesis of porphyrins covalently bound to poly(carbazole)s and poly(fluorene)s: Structural and computational studies on oligomers. Journal of Molecular Structure, 2012, 1029, 199-208.	3.6	11
140	Microwave Assisted Reactions of Natural Oils: Transesterification and Hydroformylation/Isomerization as Tools for High Value Compounds. Current Microwave Chemistry, 2015, 2, 53-60.	0.8	11
141	Sequential reactions from catalytic hydroformylation toward the synthesis of amino compounds. Tetrahedron, 2017, 73, 2389-2395.	1.9	11
142	Bioinspired-Metalloporphyrin Magnetic Nanocomposite as a Reusable Catalyst for Synthesis of Diastereomeric (â^')-Isopulegol Epoxide: Anticancer Activity Against Human Osteosarcoma Cells (MG-63). Molecules, 2019, 24, 52.	3.8	11
143	Improving regioselectivity in the rhodium catalyzed hydroformylation of protoporphyrin-IX and chlorophyll a derivatives. Journal of Molecular Catalysis A, 2005, 235, 185-193.	4.8	10
144	Ultrafast Dynamics of Manganese(III), Manganese(II), and Free-Base Bacteriochlorin: Is There Time for Photochemistry? Inorganic Chemistry, 2017, 56, 2677-2689.	4.0	10

#	Article	IF	Citations
145	Selective hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated oxosteroids with homogeneous rhodium catalysts. Journal of Molecular Catalysis A, 2006, 247, 275-282.	4.8	9
146	An efficient route for the synthesis of chiral conduritol-derivative carboxamides via palladium-catalyzed aminocarbonylation of bromocyclohexenetetraols. Tetrahedron, 2012, 68, 6935-6940.	1.9	9
147	Differentiation of aminomethyl corrole isomers by mass spectrometry. Journal of Mass Spectrometry, 2012, 47, 516-522.	1.6	9
148	Interactions between cationic surfactants and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin tetrasodium salt as seen by electric conductometry and spectroscopic techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 288-296.	4.7	9
149	Preference for sulfoxide S- or O-bonding to 3d transition metals – DFT insights. Journal of Organometallic Chemistry, 2015, 792, 167-176.	1.8	9
150	Control of the distance between porphyrin sensitizers and the TiO2 surface in solar cells by designed anchoring groups. Journal of Molecular Structure, 2019, 1196, 444-454.	3.6	9
151	Nitrobenzene method: A keystone in <i>meso</i> -substituted halogenated porphyrin synthesis and applications. Journal of Porphyrins and Phthalocyanines, 2019, 23, 329-346.	0.8	9
152	Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation Catalysts. Catalysts, 2020, 10, 1402.	3.5	9
153	Water soluble near infrared dyes based on PEGylated-Tetrapyrrolic macrocycles. Dyes and Pigments, 2021, 195, 109677.	3.7	9
154	Bridging the Gap: From Traditional Silk Dyeing Chemistry to a Secondary-School Chemistry Project. Journal of Chemical Education, 2006, 83, 1546.	2.3	8
155	Platinum supported on TiO2 as a new selective catalyst on heterogeneous hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated oxosteroids. Journal of Molecular Catalysis A, 2010, 333, 1-5.	4.8	8
156	Photophysical properties of unsymmetric meso-substituted porphyrins synthesized via the Suzuki coupling reaction. Tetrahedron, 2012, 68, 8783-8788.	1.9	8
157	Synthesis and characterization of biocompatible bimodal meso-sulfonamide-perfluorophenylporphyrins. Journal of Fluorine Chemistry, 2015, 180, 161-167.	1.7	8
158	Advances in the automated synthesis of 6-[18F]Fluoro-L-DOPA. EJNMMI Radiopharmacy and Chemistry, 2021, 6, 11.	3.9	8
159	Synthesis and Characterization of a Lipidic Alpha Amino Acid: Solubility and Interaction with Serum Albumin and Lipid Bilayers. Journal of Physical Chemistry B, 2013, 117, 3439-3448.	2.6	7
160	Biocompatible ring-deformed indium phthalocyanine label for near-infrared photoacoustic imaging. Inorganica Chimica Acta, 2021, 514, 119993.	2.4	7
161	Recyclable immobilized rhodium catalysts in the diastereoselective hydrogenation of unsaturated steroids. Journal of Molecular Catalysis A, 2009, 307, 115-120.	4.8	6
162	A novel Pd-catalysed sequential carbonylation/cyclization approach toward bis- <i>N</i> -heterocycles: rationalization by electronic structure calculations. Royal Society Open Science, 2018, 5, 181140.	2.4	6

#	Article	IF	Citations
163	Hydroaminomethylation reaction as powerful tool for preparation of rhodium/phosphine-functionalized nanomaterials. Catalytic evaluation in styrene hydroformylation. Catalysis Today, 2020, 356, 456-463.	4.4	6
164	Immobilization of Rh(I)-N-Xantphos and Fe(II)-C-Scorpionate onto Magnetic Nanoparticles: Reusable Catalytic System for Sequential Hydroformylation/Acetalization. Catalysts, 2021, 11, 608.	3. 5	6
165	Photodynamic inactivation of influenza virus as a potential alternative for the control of respiratory tract infections. Journal of Photochemistry and Photobiology, 2021, 7, 100043.	2.5	6
166	(<i>S</i>)â€BINOL Immobilized onto Multiwalled Carbon Nanotubes through Covalent Linkage: A New Approach for Hybrid Nanomaterials Characterization. ChemNanoMat, 2015, 1, 178-187.	2.8	5
167	Solid state investigation of BINOL and BINOL derivatives: A contribution to enantioselective symmetry breaking by crystallization. Thermochimica Acta, 2017, 648, 32-43.	2.7	5
168	Synthesis of Iron(II)–N-Heterocyclic Carbene Complexes: Paving the Way for a New Class of Antibiotics. Molecules, 2020, 25, 2917.	3.8	5
169	Monoterpene-based metallophthalocyanines: Sustainable synthetic approaches and photophysical studies. Journal of Porphyrins and Phthalocyanines, 2020, 24, 947-958.	0.8	5
170	Synthesis and photophysical properties of a covalently bonded palladium <i>meso</i> -sulfophenylporphyrin-poly(vinyl alcohol)polymer with potential applications as an oxygen sensor. Journal of Porphyrins and Phthalocyanines, 2006, 10, 87-95.	0.8	4
171	Maximization of regioselectivity in hydroformylation of vinyl-aromatics using simple factorial design. Journal of Molecular Catalysis A, 2007, 267, 234-240.	4.8	4
172	Separation and atropisomer isolation of <i>ortho</i> -halogenated tetraarylporphyrins by HPLC: Full characterization using 1D and 2D NMR. Journal of Porphyrins and Phthalocyanines, 2012, 16, 316-323.	0.8	4
173	Multifunctionalization of cyanuric chloride for the stepwise synthesis of potential multimodal imaging chemical entities. Arabian Journal of Chemistry, 2020, 13, 2517-2525.	4.9	4
174	Synthesis of Computationally Designed 2,5(6)-Benzimidazole Derivatives via Pd-Catalyzed Reactions for Potential E. coli DNA Gyrase B Inhibition. Molecules, 2021, 26, 1326.	3.8	4
175	Al(III) phthalocyanine catalysts for CO2 addition to epoxides: Fine-tunable selectivity for cyclic carbonates versus polycarbonates. Journal of Organometallic Chemistry, 2021, 950, 121979.	1.8	4
176	Reusable MCM-41 Immobilized Rh(I) Hydroformylation Catalysts Built on Binaphthyl-based Phosphoramidite and Phosphite Ligands. Current Organic Chemistry, 2016, 20, 1445-1453.	1.6	4
177	BINOL-Based Ditopic Diphosphite Ligands – Synthesis, Evaluation and Regioselectivity Optimization of Catalytic Hydroformylation by 2 ³ Factorial Design. Current Organic Synthesis, 2014, 11, 301-309.	1.3	4
178	Stereoisomeric Tris-BINOL-Menthol Bulky Monophosphites: Synthesis, Characterisation and Application in Rhodium-Catalysed Hydroformylation. Molecules, 2022, 27, 1989.	3.8	4
179	A New Tool in the Quest for Biocompatible Phthalocyanines: Palladium Catalyzed Aminocarbonylation for Amide Substituted Phthalonitriles and Illustrative Phthalocyanines Thereof. Catalysts, 2018, 8, 480.	3.5	3
180	Sequential catalytic carbonylation reactions for sustainable synthesis of biologically relevant entities. Journal of Organometallic Chemistry, 2020, 923, 121417.	1.8	3

#	Article	IF	CITATIONS
181	Transport and photophysical studies on porphyrin-containing sulfonated poly(etheretherketone) composite membranes. Materials Today Communications, 2021, 29, 102781.	1.9	3
182	Binaphthyl Based Molecules for Asymmetric Organocatalytic Aldol Reactions: Recent Developments from a Successful Record. Mini-Reviews in Organic Chemistry, 2014, 11, 129-140.	1.3	2
183	Infrared absorbing dyes tailored for detection and therapy of solid tumors. , 2010, , .		1
184	(R)- $2\hat{a}\in^2$ -Benzyloxy-5,5 $\hat{a}\in^2$,6,6 $\hat{a}\in^2$,7,7 $\hat{a}\in^2$,8,8 $\hat{a}\in^2$ -octahydro-1,1 $\hat{a}\in^2$ -binaphthyl-2-ol. Acta Crystallographica Sectio Reports Online, 2010, 66, o437-o437.	n E: Struc	ture 1
185	Synthesis of Chiral Bis-MOP-type Diphosphines. Chelating Effect in Nickel-catalyzed Phosphination. Chemistry Letters, 2013, 42, 37-39.	1.3	1
186	Crystal structure of (R)- $2\hat{a}\in^2$ -benzyloxy-[1,1 $\hat{a}\in^2$ -binaphthalen]-2-yl trifluoromethanesulfonate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1096-o1097.	0.2	1
187	Tervalent phosphorus acid derivatives. Organophosphorus Chemistry, 2021, , 115-149.	0.3	1
188	Photodisinfection of material surfaces and bacterial skin infections by a detergent loaded with curcumin. Photodiagnosis and Photodynamic Therapy, 2022, , 103021.	2.6	1
189	Argilas como catalisadores verdes na esterificação do colesterol: caracterização espectroscópica e identificação de polimorfos por métodos de análise térmica. Uma proposta laboratorial interdisciplinar para o 1º ciclo universitário. Quimica Nova, 2009, 32, 2225-2229.	0.3	O
190	2,2′-Bis(methoxymethoxy)-3-methyl-1,1′-binaphthyl. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2370-o2370.	0.2	0
191	Multi-spectral photoacoustic mapping of bacteriochlorins diffusing through the skin: exploring a new PAT contrast agent. Proceedings of SPIE, 2011, , .	0.8	0
192	Preface to the Special Issue Selected Contributions of the XXVI Iberoamerican Congress on catalysis – 50 years. Catalysis Today, 2020, 356, 187-188.	4.4	0
193	Nitrobenzene method: A keystone in <i>meso</i> -substituted halogenated porphyrin synthesis and applications., 2021,, 441-458.		O
194	Chapter 2. Tervalent phosphorus acid derivatives. Organophosphorus Chemistry, 2015, , 56-103.	0.3	0
195	Tervalent phosphorus acid derivatives. Organophosphorus Chemistry, 2016, , 51-98.	0.3	O
196	Tervalent phosphorus acid derivatives. Organophosphorus Chemistry, 0, , 52-103.	0.3	0
197	Terapia fotodinâmica para tratamento do cancro. , 0, , 637-674.		O