Domenico Sagnelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9555144/publications.pdf

Version: 2024-02-01

18	586	759233	794594
papers	citations	h-index	g-index
19	19	19	859
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers, 2021, 253, 117277.	10.2	43
2	Functionalisable Epoxy-rich Electrospun Fibres Based on Renewable Terpene for Multi-Purpose Applications. Polymers, 2021, 13, 1804.	4. 5	12
3	LSPR immuno-sensing based on iso-Y nanopillars for highly sensitive and specific imidacloprid detection. Journal of Materials Chemistry B, 2021, 9, 9153-9161.	5 . 8	9
4	Green enzymatic synthesis and processing of poly (cis-9,10-epoxy-18-hydroxyoctadecanoic acid) in supercritical carbon dioxide (scCO2). European Polymer Journal, 2021, 161, 110827.	5 . 4	5
5	Photo-Responsivity Improvement of Photo-Mobile Polymers Actuators Based on a Novel LCs/Azobenzene Copolymer and ZnO Nanoparticles Network. Nanomaterials, 2021, 11, 3320.	4.1	3
6	Expression of starch-binding factor CBM20 in barley plastids controls the number of starch granules and the level of CO2 fixation. Journal of Experimental Botany, 2020, 71, 234-246.	4.8	3
7	Starch/Poly(glycerol-adipate) Nanocomposites: A Novel Oral Drug Delivery Device. Coatings, 2020, 10, 125.	2.6	9
8	Starch/Poly (Glycerol-Adipate) Nanocomposite Film as Novel Biocompatible Materials. Coatings, 2019, 9, 482.	2.6	13
9	Hydrolysed pea proteins mitigate inÂvitro wheat starch digestibility. Food Hydrocolloids, 2018, 79, 117-126.	10.7	79
10	Low glycaemic index foods from wild barley and amylose-only barley lines. Journal of Functional Foods, 2018, 40, 408-416.	3.4	23
11	A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nature Communications, 2018, 9, 4630.	12.8	124
12	Combination of amylase and transferase catalysis to improve IMO compositions and productivity. LWT - Food Science and Technology, 2017, 79, 479-486.	5.2	23
13	All-natural bio-plastics using starch-betaglucan composites. Carbohydrate Polymers, 2017, 172, 237-245.	10.2	31
14	Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative. International Journal of Molecular Sciences, 2017, 18, 2075.	4.1	36
15	Plant-crafted starches for bioplastics production. Carbohydrate Polymers, 2016, 152, 398-408.	10.2	64
16	Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydrate Polymers, 2016, 152, 51-61.	10.2	34
17	The future of starch bioengineering: GM microorganisms or GM plants?. Frontiers in Plant Science, 2015, 6, 247.	3.6	30
18	Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility. Carbohydrate Polymers, 2015, 132, 409-418.	10.2	44