
Eric Armengaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9555143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dependable Integration Concepts for Human-Centric Al-Based Systems. Lecture Notes in Computer Science, 2021, , 11-23.	1.3	4
2	Information Communication Technology – a Base for Innovative Automotive Solutions and Key Enabler for Efficient and Effective Systems Engineering. Powertrain, 2021, , 809-825.	0.1	0
3	Implementing cognitive technologies in an assembly line based on two case studies. Procedia CIRP, 2021, 97, 520-525.	1.9	3
4	Challenges for Future Automotive Mobility. Powertrain, 2021, , 3-30.	0.1	1
5	Securing a Dependability Improvement Mechanism for Cyber-Physical Systems. Transactions on Computational Science and Computational Intelligence, 2021, , 511-522.	0.3	0
6	Digitalization as Opportunity to Remove Silo-Thinking and Enable Holistic Value Creation. Powertrain, 2021, , 827-854.	0.1	0
7	Integration of Security in the Development Lifecycle of Dependable Automotive CPS. , 2021, , 101-142.		2
8	DDI: A novel technology and innovation model for dependable, collaborative and autonomous systems. , 2021, , .		4
9	TEACHING - Trustworthy autonomous cyber-physical applications through human-centred intelligence. , 2021, , .		15
10	Steering Drivers of Change: Maximising Benefits of Trustworthy IoT. Communications in Computer and Information Science, 2021, , 663-674.	0.5	2
11	Automatic Detection and Prediction of the Transition Between the Behavioural States of a Subject Through a Wearable CPS. Lecture Notes in Mobility, 2021, , 177-185.	0.2	1
12	Electric Wheel Dual Drive: Functional Integration for e-Vehicle. Lecture Notes in Mobility, 2021, , 211-222.	0.2	0
13	CPS Road Network Scenarios Analysed for Dependability and Standardization. Lecture Notes in Mobility, 2021, , 107-119.	0.2	0
14	Quality improvement mechanism for cyber physical systems—An evaluation. Journal of Software: Evolution and Process, 2020, 32, e2295.	1.6	1
15	Digitalization as an Opportunity to Remove Silo-Thinking and Enable Holistic Value Creation. Powertrain, 2020, , 1-28.	0.1	4
16	Information Communication Technology – a Base for Innovative Automotive Solutions and Key Enabler for Efficient and Effective Systems Engineering. Powertrain, 2020, , 1-17.	0.1	0
17	Engineering of Runtime Safety Monitors for Cyber-Physical Systems with Digital Dependability Identities. Lecture Notes in Computer Science, 2020, , 3-17.	1.3	8
18	Automotive Meets ICT—Enabling the Shift of Value Creation Supported by European R&D. Lecture Notes in Mobility, 2019, , 45-55.	0.2	9

#	Article	IF	CITATIONS
19	European Innovation for Next Generation Electrified Vehicles and Components. , 2019, , .		3
20	The Quest for Infrastructures and Engineering Methods Enabling Highly Dynamic Autonomous Systems. Communications in Computer and Information Science, 2019, , 15-27.	0.5	11
21	Evaluation of a Dependability Mechanism for Cyber Physical Systems. Communications in Computer and Information Science, 2019, , 427-438.	0.5	2
22	DEIS: Dependability Engineering Innovation for Cyber-Physical Systems. Lecture Notes in Computer Science, 2018, , 409-416.	1.3	4
23	PRYSTINE - PRogrammable sYSTems for INtelligence in AutomobilEs. , 2018, , .		27
24	DEIS: Dependability Engineering Innovation for Industrial CPS. Lecture Notes in Mobility, 2018, , 151-163.	0.2	7
25	Integration of Security in the Development Lifecycle of Dependable Automotive CPS. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2018, , 383-423.	0.5	12
26	Model-Based Functional Safety Engineering. SpringerBriefs in Applied Sciences and Technology, 2018, , 19-31.	0.4	0
27	Towards Dependability Engineering of Cooperative Automotive Cyber-Physical Systems. Communications in Computer and Information Science, 2017, , 205-215.	0.5	8
28	Industry 4.0 as Digitalization over the Entire Product Lifecycle: Opportunities in the Automotive Domain. Communications in Computer and Information Science, 2017, , 334-351.	0.5	17
29	INCOBAT: Innovative Cost Efficient Management System for Next Generation High Voltage Batteries. , 2017, , 1-102.		0
30	Threat and Risk Assessment Methodologies in the Automotive Domain. Procedia Computer Science, 2016, 83, 1288-1294.	2.0	37
31	A Review of Threat Analysis and Risk Assessment Methods in the Automotive Context. Lecture Notes in Computer Science, 2016, , 130-141.	1.3	39
32	The EMC2 Project on Embedded Microcontrollers: Technical Progress after Two Years. , 2016, , .		2
33	Embedding Electrochemical Impedance Spectroscopy in Smart Battery Management Systems Using Multicore Technology. Lecture Notes in Mobility, 2016, , 225-237.	0.2	0
34	SAHARA: A Security-Aware Hazard and Risk Analysis Method. , 2015, , .		106
35	Filling the gap between automotive systems, safety, and software engineering. Elektrotechnik Und Informationstechnik, 2015, 132, 142-148.	1.1	8
36	A Versatile Approach for an ISO26262 Compliant Hardware-Software Interface Definition with Model-Based Development. , 2015, , .		3

#	Article	IF	CITATIONS
37	Automated generation of basic software configuration of embedded systems. , 2015, , .		Ο
38	Applicability of IEEE 802.11s for automotive wireless software updates. , 2015, , .		5
39	Service Deterioration Analysis (SDA): An Early Development Phase Dependability Analysis Method. , 2015, , .		6
40	WAP: Digital dependability identities. , 2015, , .		32
41	Incorporation of Model-Based System and Software Development Environments. , 2015, , .		3
42	Automotive real-time operating systems. ACM SIGBED Review, 2015, 11, 67-72.	1.8	5
43	Automotive embedded software: Migration challenges to multi-core computing platforms. , 2015, , .		15
44	A Combined Safety-Hazards and Security-Threat Analysis Method for Automotive Systems. Lecture Notes in Computer Science, 2015, , 237-250.	1.3	24
45	A Comprehensive Safety, Security, and Serviceability Assessment Method. Lecture Notes in Computer Science, 2015, , 410-424.	1.3	14
46	Integration of Heterogeneous Tools to a Seamless Automotive Toolchain. Communications in Computer and Information Science, 2015, , 51-62.	0.5	2
47	Pattern catalog for multicore migration of embedded automotive systems. , 2015, , .		Ο
48	OASIS: An automotive analysis and safety engineering instrument. Reliability Engineering and System Safety, 2013, 120, 150-162.	8.9	10
49	Efficient run-time co-simulation model switching for holistic analysis of embedded systems. International Journal of Embedded Systems, 2013, 5, 208.	0.3	3
50	Evaluation of CESAR: Pilot Applications. , 2013, , 295-335.		0
51	INNOVATIVE APPROACHES IN FUNCTIONAL SAFETY FOR HYBRID POWERTRAINS. ATZelektronik Worldwide, 2012, 7, 22-27.	0.1	1
52	A Bridge from System to Software Development for Safety-Critical Automotive Embedded Systems. , 2012, , .		6
53	Automatic and optimal allocation of safety integrity levels. , 2012, , .		17
54	A Computer-Aided Approach to Preliminary Hazard Analysis for Automotive Embedded Systems. , 2011, , .		16

#	Article	IF	CITATIONS
55	Method Library Framework for Safety Standard Compliant Process Tailoring. , 2011, , .		7
56	Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems. Lecture Notes in Computer Science, 2011, , 113-127.	1.3	13
57	ADACS: Advanced Diagnosis for Time-Triggered Automotive Communication Systems. , 2011, , .		Ο
58	Model-based Toolchain for the Efficient Development of Safety-Relevant Automotive Embedded Systems. , 2011, , .		13
59	Improving automotive embedded systems engineering at European level. Elektrotechnik Und Informationstechnik, 2011, 128, 209-214.	1.1	4
60	Systematic test of time-triggered communication architectures using a component-based approach. Elektrotechnik Und Informationstechnik, 2011, 128, 190-195.	1.1	0
61	A generic framework for failure modes and effects analysis of automotive networks. , 2011, , .		2
62	Towards Cross-Domains Model-Based Safety Process, Methods and Tools for Critical Embedded Systems: The CESAR Approach. Lecture Notes in Computer Science, 2011, , 57-70.	1.3	5
63	Automotive Embedded Systems. Lecture Notes in Electrical Engineering, 2011, , 155-171.	0.4	1
64	A Cross Domain Co-Simulation Platform for the Efficient Analysis of Mechatronic Systems. , 2010, , .		5
65	Improving methods and processes for the development of safety-critical automotive embedded systems. , 2010, , .		1
66	Holistic simulation of FlexRay networks by using run-time model switching. , 2010, , .		3
67	Exploration of the FlexRay signal integrity using a combined prototyping and simulation approach. , 2010, , .		2
68	Heterogeneous co-simulation platform for the efficient analysis of FlexRay-based automotive distributed embedded systems. , 2010, , .		3
69	Combining the Advantages of Simulation and Prototyping for the Validation of Dependable Communication Architectures: the TEODACS Approach. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 2009, 2, 309-318.	0.3	6
70	Remote measurement of local oscillator drifts in FlexRay networks. , 2009, , .		5
71	Moving beyond the component boundaries for efficient test and diagnosis of automotive communication architectures. , 2009, , .		7
72	Safely Stimulating the Clock Synchronization Algorithm in Time-Triggered Systems–A Combined Formal and Experimental Approach. IEEE Transactions on Industrial Informatics, 2009, 5, 132-146.	11.3	15

#	Article	IF	CITATIONS
73	Towards a Systematic Test for Embedded Automotive Communication Systems. IEEE Transactions on Industrial Informatics, 2008, 4, 146-155.	11.3	33
74	Safe deterministic replay for stimulating the clock synchronization algorithm in time-triggered systems. , 2008, , .		5
75	TEODACS : A new vision for testing dependable automotive communication systems. , 2008, , .		5
76	Verification and analysis of dependable automotive communication systems based on HW/SW co-simulation. , 2008, , .		3
77	The effect of quartz drift on convergence-average based clock synchronization. , 2007, , .		4
78	Concepts and Tools for the Test of the Communication Sub-System of Time-Triggered Distributed Embedded Systems. , 2007, , .		1
79	Automatic Parameter Identi cation in FlexRay based Automotive Communication Networks. , 2006, , .		8
80	A Model-Based Configuration Approach for Automotive Real-Time Operating Systems. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 0, 8, 270-277.	0.3	0
81	Integrated Safety and Security Development in the Automotive Domain. , 0, , .		37
82	E-Mobility-Opportunities and Challenges of Integrated Corner Solutions. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 2462-2472.	2.0	5
83	An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security. , 0, , .		16
84	Towards Brand-Independent Architectures, Components and Systems for Next Generation Electrified Vehicles Optimised for the Infrastructure. SAE International Journal of Advances and Current Practices in Mobility, 0, 4, 1906-1922.	2.0	1