Eric Armengaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9555143/publications.pdf

Version: 2024-02-01

933447 888059 84 720 10 17 citations g-index h-index papers 90 90 90 450 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SAHARA: A Security-Aware Hazard and Risk Analysis Method. , 2015, , .		106
2	A Review of Threat Analysis and Risk Assessment Methods in the Automotive Context. Lecture Notes in Computer Science, 2016, , 130-141.	1.3	39
3	Threat and Risk Assessment Methodologies in the Automotive Domain. Procedia Computer Science, 2016, 83, 1288-1294.	2.0	37
4	Integrated Safety and Security Development in the Automotive Domain. , 0, , .		37
5	Towards a Systematic Test for Embedded Automotive Communication Systems. IEEE Transactions on Industrial Informatics, 2008, 4, 146-155.	11.3	33
6	WAP: Digital dependability identities. , 2015, , .		32
7	PRYSTINE - PRogrammable sYSTems for INtelligence in AutomobilEs. , 2018, , .		27
8	A Combined Safety-Hazards and Security-Threat Analysis Method for Automotive Systems. Lecture Notes in Computer Science, 2015, , 237-250.	1.3	24
9	Automatic and optimal allocation of safety integrity levels. , 2012, , .		17
10	Industry 4.0 as Digitalization over the Entire Product Lifecycle: Opportunities in the Automotive Domain. Communications in Computer and Information Science, 2017, , 334-351.	0.5	17
11	A Computer-Aided Approach to Preliminary Hazard Analysis for Automotive Embedded Systems. , 2011, , .		16
12	An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security., 0, , .		16
13	Safely Stimulating the Clock Synchronization Algorithm in Time-Triggered Systems–A Combined Formal and Experimental Approach. IEEE Transactions on Industrial Informatics, 2009, 5, 132-146.	11.3	15
14	Automotive embedded software: Migration challenges to multi-core computing platforms. , 2015, , .		15
15	TEACHING - Trustworthy autonomous cyber-physical applications through human-centred intelligence. , 2021, , .		15
16	A Comprehensive Safety, Security, and Serviceability Assessment Method. Lecture Notes in Computer Science, 2015, , 410-424.	1.3	14
17	Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems. Lecture Notes in Computer Science, 2011, , 113-127.	1.3	13
18	Model-based Toolchain for the Efficient Development of Safety-Relevant Automotive Embedded Systems. , $2011, \ldots$		13

#	Article	lF	Citations
19	Integration of Security in the Development Lifecycle of Dependable Automotive CPS. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2018, , 383-423.	0.5	12
20	The Quest for Infrastructures and Engineering Methods Enabling Highly Dynamic Autonomous Systems. Communications in Computer and Information Science, 2019, , 15-27.	0.5	11
21	OASIS: An automotive analysis and safety engineering instrument. Reliability Engineering and System Safety, 2013, 120, 150-162.	8.9	10
22	Automotive Meets ICTâ€"Enabling the Shift of Value Creation Supported by European R&D. Lecture Notes in Mobility, 2019, , 45-55.	0.2	9
23	Automatic Parameter Identi cation in FlexRay based Automotive Communication Networks., 2006,,.		8
24	Filling the gap between automotive systems, safety, and software engineering. Elektrotechnik Und Informationstechnik, 2015, 132, 142-148.	1.1	8
25	Towards Dependability Engineering of Cooperative Automotive Cyber-Physical Systems. Communications in Computer and Information Science, 2017, , 205-215.	0.5	8
26	Engineering of Runtime Safety Monitors for Cyber-Physical Systems with Digital Dependability Identities. Lecture Notes in Computer Science, 2020, , 3-17.	1.3	8
27	Moving beyond the component boundaries for efficient test and diagnosis of automotive communication architectures., 2009,,.		7
28	Method Library Framework for Safety Standard Compliant Process Tailoring. , 2011, , .		7
29	DEIS: Dependability Engineering Innovation for Industrial CPS. Lecture Notes in Mobility, 2018, , 151-163.	0.2	7
30	Combining the Advantages of Simulation and Prototyping for the Validation of Dependable Communication Architectures: the TEODACS Approach. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 2009, 2, 309-318.	0.3	6
31	A Bridge from System to Software Development for Safety-Critical Automotive Embedded Systems. , 2012, , .		6
32	Service Deterioration Analysis (SDA): An Early Development Phase Dependability Analysis Method., 2015,,.		6
33	Safe deterministic replay for stimulating the clock synchronization algorithm in time-triggered systems. , 2008, , .		5
34	TEODACS: A new vision for testing dependable automotive communication systems., 2008,,.		5
35	Remote measurement of local oscillator drifts in FlexRay networks. , 2009, , .		5
36	A Cross Domain Co-Simulation Platform for the Efficient Analysis of Mechatronic Systems. , 2010, , .		5

#	Article	IF	Citations
37	Applicability of IEEE 802.11s for automotive wireless software updates., 2015,,.		5
38	Automotive real-time operating systems. ACM SIGBED Review, 2015, 11, 67-72.	1.8	5
39	E-Mobility-Opportunities and Challenges of Integrated Corner Solutions. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 2462-2472.	2.0	5
40	Towards Cross-Domains Model-Based Safety Process, Methods and Tools for Critical Embedded Systems: The CESAR Approach. Lecture Notes in Computer Science, 2011, , 57-70.	1.3	5
41	The effect of quartz drift on convergence-average based clock synchronization. , 2007, , .		4
42	Improving automotive embedded systems engineering at European level. Elektrotechnik Und Informationstechnik, 2011, 128, 209-214.	1.1	4
43	DEIS: Dependability Engineering Innovation for Cyber-Physical Systems. Lecture Notes in Computer Science, 2018, , 409-416.	1.3	4
44	Dependable Integration Concepts for Human-Centric Al-Based Systems. Lecture Notes in Computer Science, 2021, , 11-23.	1.3	4
45	DDI: A novel technology and innovation model for dependable, collaborative and autonomous systems. , 2021, , .		4
46	Digitalization as an Opportunity to Remove Silo-Thinking and Enable Holistic Value Creation. Powertrain, 2020, , 1-28.	0.1	4
47	Verification and analysis of dependable automotive communication systems based on HW/SW co-simulation., 2008,,.		3
48	Holistic simulation of FlexRay networks by using run-time model switching. , 2010, , .		3
49	Heterogeneous co-simulation platform for the efficient analysis of FlexRay-based automotive distributed embedded systems. , 2010, , .		3
50	Efficient run-time co-simulation model switching for holistic analysis of embedded systems. International Journal of Embedded Systems, 2013, 5, 208.	0.3	3
51	A Versatile Approach for an ISO26262 Compliant Hardware-Software Interface Definition with Model-Based Development., 2015,,.		3
52	Incorporation of Model-Based System and Software Development Environments., 2015,,.		3
53	European Innovation for Next Generation Electrified Vehicles and Components., 2019,,.		3
54	Implementing cognitive technologies in an assembly line based on two case studies. Procedia CIRP, 2021, 97, 520-525.	1.9	3

#	Article	IF	Citations
55	Exploration of the FlexRay signal integrity using a combined prototyping and simulation approach. , 2010, , .		2
56	A generic framework for failure modes and effects analysis of automotive networks. , 2011, , .		2
57	The EMC2 Project on Embedded Microcontrollers: Technical Progress after Two Years. , 2016, , .		2
58	Integration of Security in the Development Lifecycle of Dependable Automotive CPS., 2021,, 101-142.		2
59	Steering Drivers of Change: Maximising Benefits of Trustworthy IoT. Communications in Computer and Information Science, 2021, , 663-674.	0.5	2
60	Evaluation of a Dependability Mechanism for Cyber Physical Systems. Communications in Computer and Information Science, 2019, , 427-438.	0.5	2
61	Integration of Heterogeneous Tools to a Seamless Automotive Toolchain. Communications in Computer and Information Science, 2015, , 51-62.	0.5	2
62	Improving methods and processes for the development of safety-critical automotive embedded systems. , 2010, , .		1
63	INNOVATIVE APPROACHES IN FUNCTIONAL SAFETY FOR HYBRID POWERTRAINS. ATZelektronik Worldwide, 2012, 7, 22-27.	0.1	1
64	Quality improvement mechanism for cyber physical systems—An evaluation. Journal of Software: Evolution and Process, 2020, 32, e2295.	1.6	1
65	Challenges for Future Automotive Mobility. Powertrain, 2021, , 3-30.	0.1	1
66	Concepts and Tools for the Test of the Communication Sub-System of Time-Triggered Distributed Embedded Systems. , 2007, , .		1
67	Automotive Embedded Systems. Lecture Notes in Electrical Engineering, 2011, , 155-171.	0.4	1
68	Automatic Detection and Prediction of the Transition Between the Behavioural States of a Subject Through a Wearable CPS. Lecture Notes in Mobility, 2021, , 177-185.	0.2	1
69	Towards Brand-Independent Architectures, Components and Systems for Next Generation Electrified Vehicles Optimised for the Infrastructure. SAE International Journal of Advances and Current Practices in Mobility, 0, 4, 1906-1922.	2.0	1
70	ADACS: Advanced Diagnosis for Time-Triggered Automotive Communication Systems., 2011,,.		0
71	Systematic test of time-triggered communication architectures using a component-based approach. Elektrotechnik Und Informationstechnik, 2011, 128, 190-195.	1.1	0
72	A Model-Based Configuration Approach for Automotive Real-Time Operating Systems. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 0, 8, 270-277.	0.3	0

#	Article	IF	Citations
73	Automated generation of basic software configuration of embedded systems., 2015,,.		O
74	Information Communication Technology – a Base for Innovative Automotive Solutions and Key Enabler for Efficient and Effective Systems Engineering. Powertrain, 2021, , 809-825.	0.1	0
75	Securing a Dependability Improvement Mechanism for Cyber-Physical Systems. Transactions on Computational Science and Computational Intelligence, 2021, , 511-522.	0.3	O
76	Digitalization as Opportunity to Remove Silo-Thinking and Enable Holistic Value Creation. Powertrain, 2021, , 827-854.	0.1	0
77	Evaluation of CESAR: Pilot Applications. , 2013, , 295-335.		O
78	Pattern catalog for multicore migration of embedded automotive systems. , 2015, , .		0
79	Embedding Electrochemical Impedance Spectroscopy in Smart Battery Management Systems Using Multicore Technology. Lecture Notes in Mobility, 2016, , 225-237.	0.2	O
80	INCOBAT: Innovative Cost Efficient Management System for Next Generation High Voltage Batteries. , 2017, , 1 -102.		0
81	Model-Based Functional Safety Engineering. SpringerBriefs in Applied Sciences and Technology, 2018, , 19-31.	0.4	O
82	Electric Wheel Dual Drive: Functional Integration for e-Vehicle. Lecture Notes in Mobility, 2021, , 211-222.	0.2	0
83	CPS Road Network Scenarios Analysed for Dependability and Standardization. Lecture Notes in Mobility, 2021, , 107-119.	0.2	0
84	Information Communication Technology – a Base for Innovative Automotive Solutions and Key Enabler for Efficient and Effective Systems Engineering. Powertrain, 2020, , 1-17.	0.1	0