Jiehua Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9555009/publications.pdf

Version: 2024-02-01

304368 174990 2,765 63 22 52 citations h-index g-index papers 67 67 67 4698 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ZnS nanolayer coated hollow carbon spheres with enhanced rate and cycling performance for Li-S batteries. Science China Technological Sciences, 2022, 65, 272-281.	2.0	6
2	Amorphous C,N Codoping Cobalt Phosphates Simply Fabricated via a Mild Host–Guest Strategy as Bifunctional Electrocatalysts for Zinc–Air Batteries. Energy Technology, 2022, 10, 2100940.	1.8	4
3	Multiâ€Strategy Architecture of Highâ€Efficiency Electrocatalysts for Underwater Zn–H ₂ O ₂ Batteries with Superior Power Density of 442ÂmW cm ^{â^'2} . Small, 2022, 18, e2106532.	5.2	9
4	All-Inorganic Perovskite Single Crystals for Optoelectronic Detection. Crystals, 2022, 12, 792.	1.0	6
5	Recent advances in interlayer and separator engineering for lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 57, 41-60.	7.1	68
6	MnOâ€Inlaid hierarchically porous carbon hybrid for lithiumâ€sulfur batteries. Nano Select, 2021, 2, 573-580.	1.9	9
7	Low-temperature architecture of a cubic-phase CsPbBr ₃ single crystal for ultrasensitive weak-light photodetectors. Chemical Communications, 2021, 57, 7798-7801.	2.2	18
8	In situ interfacial architecture of lithium vanadate-based cathode for printable lithium batteries. IScience, 2021, 24, 102666.	1.9	2
9	Self-template construction of 2D amorphous N-doped CoFe-mesoporous phosphate microsheets for zinc-air batteries. Journal of Power Sources, 2021, 498, 229859.	4.0	14
10	MXene/air-laid paper composite sensors for both tensile and torsional deformations detection. Composites Communications, 2021, 25, 100768.	3.3	5
11	2D Perovskite Single Crystals for Photodetectors: From Macro―to Microscale. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100183.	1.2	5
12	Nanolayer GO coated CNT film interlayer for lithium-sulfur batteries with enhanced cycling stability. Materials Letters, 2021, 305, 130753.	1.3	4
13	Biphasic Liquid–Liquid Interface Limit Architecture of High-Quality Perovskite Single-Crystal Sheets for UV Photodetection. Journal of Physical Chemistry Letters, 2021, 12, 10052-10059.	2.1	9
14	Self-Assembled Bipolar Metals with Hollow Carbon Spheres for High-Performance Li–S Battery Cathodes. ACS Applied Energy Materials, 2021, 4, 12745-12753.	2.5	9
15	Electrolyte Technologies for High Performance Sodium-lon Capacitors. Frontiers in Chemistry, 2020, 8, 652.	1.8	16
16	lonic-liquid assisted architecture of amorphous nanoporous zinc-rich carbon-based microstars for lithium storage. Chemical Communications, 2020, 56, 12206-12209.	2.2	1
17	Nitrogen-doped carbon nanotubes intertwined with porous carbon with enhanced cathode performance in lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 3926-3933.	2.5	10
18	Large-scale multirole Zn(II) programmed synthesis of ultrathin hierarchically porous carbon nanosheets. Science China Technological Sciences, 2020, 63, 1730-1738.	2.0	11

#	Article	IF	CITATIONS
19	High-Power Aqueous Zn-H2O2 Batteries for Multiple Applications. Cell Reports Physical Science, 2020, 1, 100027.	2.8	14
20	Recent Progress in Electrolytes for Zn–Air Batteries. Frontiers in Chemistry, 2020, 8, 372.	1.8	83
21	Large-Scale Ligand-Free Synthesis of Homogeneous Core–Shell Quantum-Dot-Modified Cs ₄ PbBr ₆ Microcrystals. Inorganic Chemistry, 2019, 58, 10620-10624.	1.9	11
22	Microconcave MAPbBr ₃ Single Crystal for High-Performance Photodetector. Journal of Physical Chemistry Letters, 2019, 10, 786-792.	2.1	41
23	Exfoliated graphitic carbon nitride self-recognizing CH3NH3PbI3 grain boundaries by hydrogen bonding interaction for improved perovskite solar cells. Solar Energy, 2019, 181, 161-168.	2.9	23
24	Sodium polyacrylate-derived porous carbon nanosheets for high-performance lithium–sulfur batteries. Sustainable Energy and Fuels, 2019, 3, 942-947.	2.5	10
25	Hierarchical Porous Nâ€Doped Carbon Nanosheets Obtained by Organic–Inorganic Bipolymeric Engineering for Improved Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 4040-4046.	1.7	11
26	Biomass-derived porous carbon materials for advanced lithium sulfur batteries. Journal of Energy Chemistry, 2019, 34, 171-185.	7.1	120
27	Palladium-ytterbium bimetallic electrocatalysts supported on carbon black, titanium suboxide, or poly(diallyldimethylammonium chloride)-functionalized titanium suboxide towards methanol oxidation in alkaline media. lonics, 2018, 24, 3085-3094.	1.2	1
28	An effective Pd@Ni-B/C anode catalyst for electro-oxidation of formic acid. International Journal of Hydrogen Energy, 2018, 43, 3216-3222.	3.8	23
29	Semitransparent CH ₃ NH ₃ Pbl ₃ Films Achieved by Solvent Engineering for Annealing―and Electron Transport Layerâ€Free Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700222.	3.1	22
30	Nitrogen-doped carbon-modified titanium oxides supported Pd catalyst for the electrooxidation of formic acid. Journal of Solid State Electrochemistry, 2018, 22, 2623-2628.	1.2	5
31	Advanced chemical strategies for lithium–sulfur batteries: A review. Green Energy and Environment, 2018, 3, 2-19.	4.7	164
32	Three-dimensional graphene network supported by poly phenylene sulfide with negative permittivity at radio-frequency. Journal of Materials Science: Materials in Electronics, 2018, 29, 20768-20774.	1.1	6
33	Smart short-chain bifunctional N,N-dimethylethanolamine for high-performance lithium batteries. Electrochimica Acta, 2018, 282, 711-718.	2.6	3
34	The strategies of advanced cathode composites for lithium-sulfur batteries. Science China Technological Sciences, 2017, 60, 175-185.	2.0	25
35	Mechanism on the Improved Performance of Lithium Sulfur Batteries with MXene-Based Additives. Journal of Physical Chemistry C, 2017, 121, 11047-11054.	1.5	118
36	Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. Journal of Materials Chemistry A, 2017, 5, 2328-2338.	5 . 2	134

#	Article	IF	Citations
37	Lithium cell-assisted low-overpotential Li–O ₂ batteries by in situ discharge activation. Chemical Communications, 2017, 53, 10568-10571.	2.2	5
38	Bimolecular-induced hierarchical nanoporous LiTi ₂ (PO ₄) ₃ /C with superior high-rate and cycling performance. Chemical Communications, 2017, 53, 8703-8706.	2.2	7
39	Nitrogen-doped Li4Ti5O12/carbon hybrids derived from inorganic polymer for fast lithium storage. Electrochimica Acta, 2017, 247, 132-138.	2.6	19
40	Recent advances in electrocatalysts for non-aqueous Li–O 2 batteries. Chinese Chemical Letters, 2017, 28, 709-718.	4.8	36
41	Synthesis and Properties of Nitrogen-Containing Conjugated Microporous Polymers. Macromolecular Materials and Engineering, 2016, 301, 451-456.	1.7	17
42	Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake. Chemical Communications, 2016, 52, 9797-9800.	2.2	159
43	Controllable growth of bulk cubic-phase CH ₃ NH ₃ Pbl ₃ single crystal with exciting room-temperature stability. CrystEngComm, 2016, 18, 5257-5261.	1.3	51
44	Nanocuboid TiO2 based organic-inorganic hybrids for fast RhB trapping and photodegradation. Solar Energy Materials and Solar Cells, 2016, 157, 139-145.	3.0	9
45	Natural Integrated Carbon Architecture for Rechargeable Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 666-670.	3.2	55
46	Homogenous Core–Shell Nitrogenâ€Doped Carbon Nanotubes for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1892-1896.	1.7	4
47	Two-Dimensional Wavelike Spinel Lithium Titanate for Fast Lithium Storage. Scientific Reports, 2015, 5, 9782.	1.6	28
48	Amorphous titanate-crosslinking N-rich carbon hybrid with 3D channels for fast lithium storage. RSC Advances, 2015, 5, 34088-34093.	1.7	5
49	Supercritical synthesis of layered elongated hexagonal titanium phosphate nanoplates. RSC Advances, 2015, 5, 7798-7802.	1.7	10
50	Ultrathin Wrinkled N-Doped Carbon Nanotubes for Noble-Metal Loading and Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20507-20512.	4.0	17
51	Ultrafine dice-like anatase TiO2 for highly efficient dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 133-139.	3.0	16
52	Twoâ€Dimensional Nanoarchitectures for Lithium Storage. Advanced Materials, 2012, 24, 4097-4111.	11.1	501
53	Fabrication of O (dye)-terminated anatase TiO2 nanosheets for dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 2054.	15.6	20
54	High-yield synthesis of ultrathin silica-based nanosheets and their superior catalytic activity in H2O2 decomposition. Chemical Communications, 2011, 47, 6135.	2.2	24

#	Article	IF	CITATIONS
55	CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Transactions, 2011, 40, 6388.	1.6	236
56	Hydrogen storage in Ni–B nanoalloy-doped 2D graphene. International Journal of Hydrogen Energy, 2011, 36, 12950-12954.	3.8	47
57	Sandwichâ€Like, Stacked Ultrathin Titanate Nanosheets for Ultrafast Lithium Storage. Advanced Materials, 2011, 23, 998-1002.	11.1	204
58	Uniform core–shell titanium phosphate nanospheres with orderly open nanopores: a highly active BrÃ,nsted acid catalyst. Chemical Communications, 2010, 46, 1670.	2.2	38
59	â€~Nanoreactors' for photocatalytic H2 evolution in oil–water biphase systems. Physical Chemistry Chemical Physics, 2010, 12, 14449.	1.3	4
60	DNAâ€Mediated Synthesis of Microporous Singleâ€Crystalâ€Like NaTi ₂ (PO ₄) ₃ Nanospheres. Small, 2008, 4, 1976-1979.	5.2	27
61	Structure and Activity of RNase A in Sodium Dodecyl Sulphate Solutions. Journal of Dispersion Science and Technology, 2007, 28, 297-300.	1.3	3
62	Reverse Micelles in Carbon Dioxide with Ionic-Liquid Domains. Angewandte Chemie - International Edition, 2007, 46, 3313-3315.	7.2	117
63	Study of ethylene glycol/TX-100/ionic liquid microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 211-215.	2.3	62