Jin Shao Hua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9554953/publications.pdf

Version: 2024-02-01

111	1,783	279701	360920
papers	citations	h-index	g-index
113	113	113	1487
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polymer-based lightweight materials for electromagnetic interference shielding: a review. Journal of Materials Science, 2021, 56, 6549-6580.	1.7	93
2	Preparation and characterization of chitosan physical hydrogels with enhanced mechanical and antibacterial properties. Carbohydrate Polymers, 2017, 157, 1383-1392.	5.1	91
3	Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydrate Polymers, 2018, 191, 8-16.	5.1	78
4	Preparation of Nanofibers with Renewable Polymers and Their Application in Wound Dressing. International Journal of Polymer Science, 2016, 2016, 1-17.	1.2	58
5	Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5, 5 â \in 2-bistetrazole-1, 1 â \in 2-diolate based polymer bonded explosive. Journal of Hazardous Materials, 2017, 338, 208-217.	6.5	56
6	Effects of Additives on εâ€HNIW Crystal Morphology and Impact Sensitivity. Propellants, Explosives, Pyrotechnics, 2012, 37, 77-82.	1.0	52
7	A novel cocrystal composed of CL-20 and an energetic ionic salt. Chemical Communications, 2018, 54, 13268-13270.	2.2	46
8	A single molecular fluorescent probe for selective and sensitive detection of nitroaromatic explosives: A new strategy for the mask-free discrimination of TNT and TNP within same sample. Talanta, 2017, 166, 228-233.	2.9	45
9	Thermal decomposition mechanism study of 3-nitro-1,2,4-triazol-5-one (NTO): Combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations. Fuel, 2021, 295, 120655.	3.4	44
10	Thermolysis, nonisothermal decomposition kinetics, calculated detonation velocity and safety assessment of dihydroxylammonium 5, $5\hat{a}\in^2$ -bistetrazole-1, $1\hat{a}\in^2$ -diolate. Journal of Thermal Analysis and Calorimetry, 2016, 126, 473-480.	2.0	43
11	A new multifunctional Schiff-based chemosensor for mask-free fluorimetric and colorimetric sensing of Fâ^' and CNâ^'. Talanta, 2016, 152, 39-44.	2.9	39
12	Bioresponsive Materials for Drug Delivery Based on Carboxymethyl Chitosan/Poly(\hat{l}^3 -Glutamic Acid) Composite Microparticles. Marine Drugs, 2017, 15, 127.	2.2	37
13	MXene hybrid polyvinyl alcohol flexible composite films for electromagnetic interference shielding. Applied Surface Science, 2022, 578, 152007.	3.1	36
14	Morphology control of 3-nitro-1,2,4-triazole-5-one (NTO) by molecular dynamics simulation. CrystEngComm, 2018, 20, 6252-6260.	1.3	35
15	Evaluation of thermal hazards and thermo-kinetic parameters of N,Nâ \in 2-dinitro-4,4â \in 2-azo-Bis(1,2,4-triazolone) (DNZTO). Thermochimica Acta, 2016, 623, 58-64.	1.2	31
16	Molecular dynamic simulations on TKX-50/RDX cocrystal. Journal of Molecular Graphics and Modelling, 2017, 74, 171-176.	1.3	31
17	Molecular dynamic simulations on TKX-50/HMX cocrystal. RSC Advances, 2017, 7, 6795-6799.	1.7	30
18	Preparation of chitosan-Cu2+/NH3 physical hydrogel and its properties. International Journal of Biological Macromolecules, 2019, 133, 67-75.	3.6	30

#	Article	IF	CITATIONS
19	Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) by accelerating rate calorimeter (ARC). Journal of Thermal Analysis and Calorimetry, 2016, 126, 467-471.	2.0	28
20	Preparation, Characterization, Thermal Evaluation and Sensitivities of TKX-50/GO Composite. Propellants, Explosives, Pyrotechnics, 2017, 42, 1104-1110.	1.0	28
21	Nitrogen-rich 4,4′-azo bis(1,2,4-triazolone) saltsâ€"the synthesis and promising properties of a new family of high-density insensitive materials. Dalton Transactions, 2016, 45, 3590-3598.	1.6	27
22	Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H2O2 Detection. Materials, 2017, 10, 868.	1.3	26
23	Preparation of chitosan and carboxymethylcelluloseâ€based polyelectrolyte complex hydrogel via SDâ€Aâ€SGT method and its adsorption of anionic and cationic dye. Journal of Applied Polymer Science, 2020, 137, 48980.	1.3	26
24	Reactive molecular dynamics simulations on the thermal decompositions and oxidations of TKX-50 and twinned TKX-50. CrystEngComm, 2020, 22, 2593-2600.	1.3	24
25	The primary decomposition product of TKX-50 under adiabatic condition and its thermal decomposition. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2049-2055.	2.0	23
26	Construction of a physically cross-linked carrageenan/chitosan/calcium ion double-network hydrogel for 3-Nitro-1, 2, 4-triazole-5-one removal. Journal of Hazardous Materials, 2022, 424, 127510.	6.5	21
27	Quantitative Determination of εâ€phase in polymorphic HNIW using Xâ€ray Diffraction Patterns. Propellants, Explosives, Pyrotechnics, 2008, 33, 467-471.	1.0	20
28	The study of external growth environments on the crystal morphology of $\hat{l}\mu$ -HNIW by molecular dynamics simulation. Journal of Materials Science, 2018, 53, 12921-12936.	1.7	20
29	Molecular dynamics simulations on dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate/hexanitrohexaazaisowurtzitane cocrystal. RSC Advances, 2016, 6, 4221-4226.	1.7	19
30	Preparation and Characterization of Cyclotrimethylenetrinitramine (RDX) with Reduced Sensitivity. Materials, 2017, 10, 974.	1.3	19
31	A simple ratiometric and colorimetric chemosensor for the selective detection of fluoride in DMSO buffered solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 194-198.	2.0	18
32	Study on a novel high energetic and insensitive munitions formulation: TKX-50 based melt cast high explosive. RSC Advances, 2017, 7, 31485-31492.	1.7	18
33	Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC). Journal of Thermal Analysis and Calorimetry, 2018, 131, 89-93.	2.0	18
34	Triphenylamine based lab-on-a-molecule for the highly selective and sensitive detection of Zn ²⁺ and CN ^{â^²} in aqueous solution. RSC Advances, 2016, 6, 93826-93831.	1.7	17
35	Thermal stability assessment of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) by accelerating rate calorimeter (ARC). Journal of Thermal Analysis and Calorimetry, 2016, 126, 1185-1190.	2.0	17
36	Molecular dynamics simulations on miscibility, glass transition temperature and mechanical properties of PMMA/DBP binary system. Journal of Molecular Graphics and Modelling, 2018, 84, 182-188.	1.3	17

#	Article	IF	Citations
37	Preparation and performances characterization of HNIW/NTO-based high-energetic low vulnerable polymer-bonded explosive. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3589-3602.	2.0	17
38	Thermal behavior, compatibility study and safety assessment of diammonium 5,5′-bistetrazole-1,1′-diolate (ABTOX). Journal of Thermal Analysis and Calorimetry, 2020, 139, 1771-1777.	2.0	17
39	Strategies to Get Drugs across Bladder Penetrating Barriers for Improving Bladder Cancer Therapy. Pharmaceutics, 2021, 13, 166.	2.0	17
40	Solubilities of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate in Various Pure Solvents at Temperatures between 293.15 and 323.15 K. Journal of Chemical & Engineering Data, 2016, 61, 1873-1875.	1.0	16
41	Sizeâ€dependent Effect on Thermal Decomposition and Hazard Assessment of TKXâ€50 under Adiabatic Condition. Propellants, Explosives, Pyrotechnics, 2018, 43, 488-495.	1.0	16
42	Preparation, nonisothermal decomposition kinetics, heat capacity, and safety parameters of TKX-50-based PBX. Journal of Thermal Analysis and Calorimetry, 2018, 131, 3193-3199.	2.0	16
43	Study on Cellulose Acetate Butyrate/Plasticizer Systems by Molecular Dynamics Simulation and Experimental Characterization. Polymers, 2020, 12, 1272.	2.0	16
44	Preparation of copper ferrite by sol–gel method and the synergistic catalytic for the thermal decomposition of ammonium perchlorate. Journal of Sol-Gel Science and Technology, 2021, 98, 559-567.	1.1	16
45	Preparation of É-HNIW by a One-Pot Method in Concentrated Nitric Acid from Tetraacetyldiformylhexaazaisowurtzitane. Propellants, Explosives, Pyrotechnics, 2007, 32, 468-471.	1.0	15
46	Squaramide-based lab-on-a-molecule for the detection of silver ion and nitroaromatic explosives. RSC Advances, 2015, 5, 96665-96669.	1.7	15
47	Thermal decomposition behavior and thermal stability of DABT·2DMSO. Journal of Thermal Analysis and Calorimetry, 2018, 131, 3185-3191.	2.0	15
48	Unveiling the Dependence of Glass Transitions on Mixing Thermodynamics in Miscible Systems. Scientific Reports, 2015, 5, 8500.	1.6	14
49	Initial Decomposition Mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under Shock Loading: ReaxFF Parameterization and Molecular Dynamic Study. Molecules, 2021, 26, 4808.	1.7	14
50	Dissolution Properties of Dihydroxylammonium $5,5\hat{\mathbb{E}}^1$ -Bistetrazole- $1,1\hat{\mathbb{E}}^1$ -diolate and Disodium $5,5\hat{\mathbb{E}}^1$ -Bistetrazole- $1,1\hat{\mathbb{E}}^1$ -diolate in Water. Journal of Energetic Materials, 2016, 34, 416-425.	1.0	12
51	Thermal behavior and thermo-kinetic studies of 5,5′-bistetrazole-1,1′-diolate (1,1-BTO). Journal of Thermal Analysis and Calorimetry, 2017, 129, 1265-1270.	2.0	12
52	Preparation and thermal properties study of HNIW/FOX-7 based high energy polymer bonded explosive (PBX) with low vulnerability to thermal stimulations. Journal of Energetic Materials, 2020, 38, 83-97.	1.0	12
53	A Facile Approach to Carbon Dotsâ€Mesoporous Silica Nanohybrids and Their Applications for Multicolor and Twoâ€Photon Imaging Guided Chemoâ€∤Photothermal Synergistic Oncotherapy. ChemNanoMat, 2020, 6, 953-962.	1.5	12
54	Transmucosal Delivery of Self-Assembling Photosensitizer–Nitazoxanide Nanocomplexes with Fluorinated Chitosan for Instillation-Based Photodynamic Therapy of Orthotopic Bladder Tumors. ACS Biomaterials Science and Engineering, 2021, 7, 1485-1495.	2.6	12

#	Article	IF	CITATIONS
55	Preparation, Crystal Structure and Properties of a New Crystal Form of Diammonium 5,5′â€bistetrazoleâ€1,1′â€diolate. Chinese Journal of Chemistry, 2015, 33, 1229-1234.	2.6	11
56	Preparation of the Sodium Alginate-g-(Polyacrylic Acid-co-Allyltrimethylammonium Chloride) Polyampholytic Superabsorbent Polymer and Its Dye Adsorption Property. Marine Drugs, 2018, 16, 476.	2.2	11
57	Pressure characteristics and safety performance of TKX-50 decomposition in confined space. Journal of Energetic Materials, 2019, 37, 1-11.	1.0	11
58	The novel compound dimethylamine-5,5 $\hat{a}\in^2$ -bistetrazole-1,1 $\hat{a}\in^2$ -diolate: crystal structure, thermal investigation, safety evaluation and theoretical studies. RSC Advances, 2017, 7, 18523-18528.	1.7	10
59	Density Functional Theory (DFT) Study on the Structures and Energetic Properties of Isomers of Tetranitro-bis-1,2,4-triazoles. ACS Omega, 2020, 5, 19464-19468.	1.6	10
60	Facile mass preparation and characterization of Al/copper ferrites metastable intermolecular energetic nanocomposites. RSC Advances, 2021, 11, 7633-7643.	1.7	10
61	Theoretical study of the heats of formation, detonation properties, and bond dissociation energies of substituted bis-1,2,4-triazole compounds. Journal of Molecular Modeling, 2018, 24, 85.	0.8	9
62	Thermal decomposition and safety assessment of $3,3\hat{a}\in^2$ -dinitrimino- $5,5\hat{a}\in^2$ -bis(1H-1,2,4-triazole) by DTA and ARC. Journal of Thermal Analysis and Calorimetry, 2018, 132, 805-811.	2.0	9
63	Effects of carboxymethylcellulose sodium on the morphology and properties of TKX-50, an insensitive high-energy explosive. Journal of Energetic Materials, 2019, 37, 199-211.	1.0	9
64	Effect of Sodium Alginate on the Morphology and Properties of High Energy Insensitive Explosive TKXâ€50. Propellants, Explosives, Pyrotechnics, 2019, 44, 413-422.	1.0	9
65	High energy and insensitive explosives based on energetic porous aromatic frameworks. Nano Research, 2022, 15, 1698-1705.	5.8	9
66	Heat effects of NTO synthesis in nitric acid solution. Journal of Thermal Analysis and Calorimetry, 2017, 128, 301-310.	2.0	8
67	Molecular dynamics investigation on the morphology of HNIW affected by the growth condition. Journal of Energetic Materials, 2019, 37, 44-56.	1.0	8
68	Reactive molecular dynamics simulation of thermal decomposition for nano-FOX-7. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	8
69	Thermal stability assessment of $4,4\hat{a}\in^2$ -azo-bis(1,2,4-triazolone) (ZTO) and its salts by accelerating rate calorimeter (ARC). Journal of Thermal Analysis and Calorimetry, 2018, 132, 563-569.	2.0	7
70	Molecular dynamic simulations for FOX-7 and FOX-7 based PBXs. Journal of Molecular Modeling, 2018, 24, 145.	0.8	7
71	Thermal decomposition and thermal stability of potassium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole). Journal of Thermal Analysis and Calorimetry, 2018, 133, 1563-1569.	2.0	6
72	Measurement and Correlation of Solubilities of 5,5′-Dinitramino-3,3′-bi[1,2,4-triazolate] Carbohydrazide Salt (CBNT) in Various Pure Solvents and a Binary Mixture (Dimethyl Sulfoxide + Water) from 298.15 to 343.15 K. Journal of Chemical & Data, 2019, 64, 3874-3881.	1.0	6

#	Article	IF	Citations
73	Investigation into the Temperature Adaptability of HNIWâ€based PBXs. Propellants, Explosives, Pyrotechnics, 2019, 44, 327-336.	1.0	6
74	Thermal safety assessment and thermo-kinetic parameters of $5,5\hat{a}\in^2$ -dinitramino- $3,3\hat{a}\in^2$ -bi[1,2,4-triazolate] carbohydrazide salt (CBNT). Journal of Thermal Analysis and Calorimetry, 2021, 144, 647-655.	2.0	6
75	Bandgap Engineering for Photocatalytic Polymerization of 3, 4â€Ethylenedioxythiophene (EDOT) over Cs ₃ Bi _x Sb _(2â€x) Br ₉ Inverse Opals. ChemCatChem, 2022, 14, .	1.8	6
76	Dissolution thermodynamics of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate in water at TÂ=Â(298.15	,) Tj ETQq(2:0) 0 0 rgBT /0
77	Construction of a Fluorescent H2O2 Biosensor with Chitosan 6-OH Immobilized \hat{l}^2 -Cyclodextrin Derivatives. Marine Drugs, 2017, 15, 284.	2.2	5
78	A molecular dynamics study and detonation parameters calculation of 5,5'-dinitramino-3,3'-bi[1,2,4-triazolate] carbohydrazide salt (CBNT) and its PBXs. Journal of Energetic Materials, 2020, 38, 283-294.	1.0	5
79	Solubilities of 2,6â€Diaminoâ€3,5â€dinitropyrazineâ€1â€oxide in the Binary Mixtures of DMSO+H 2 O, DMF+H 2 and NMP+H 2 O in the Temperature Range from 293.15 to 323.15â€K under the Atmospheric Pressure. Propellants, Explosives, Pyrotechnics, 2020, 45, 503-508.	O 1.0	5
80	Empirical Kinetics Equation of the Synthesis of NTO in Nitric Acid. Propellants, Explosives, Pyrotechnics, 2016, 41, 1085-1091.	1.0	4
81	Preparation, crystal structure, thermal behavior, and theoretical studies of N,N′-dinitro-4, 4′-azo-bis(1,2,4-triazolone) (DNZTO). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2016, 71, 197-204.	0.3	4
82	Theoretical study on the weak interaction and energy performance of nitroformate salts and nitroformate-based propellant formulations. Journal of Molecular Modeling, 2019, 25, 285.	0.8	4
83	Molecular dynamics simulation on the morphology of 1,1-diamino-2,2-dinitroethylene (FOX-7) affected by dimethyl sulfoxide (DMSO) and temperature. Canadian Journal of Chemistry, 2019, 97, 538-545.	0.6	4
84	Effects of Crystallinity on the Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over CsPbBr3 Inverse Opals. Catalysts, 2021, 11, 1331.	1.6	4
85	Fabrication of hydrophobic AlCoCrFeNi high-entropy alloy and superior corrosion resistance to NTO aqueous solution. Journal of Alloys and Compounds, 2022, , 165394.	2.8	4
86	10-Formyl-2,4,6,8,12-pentanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3112-o3112.	0.2	3
87	Synthesis and Characterization of $1,5\hat{a}\in D$ initro $\hat{a}\in 2,6\hat{a}\in D$ is $\hat{c}\in C$, $\hat{c}\in C$ in $\hat{c}\in C$, $\hat{c}\in C$ is $\hat{c}\in C$ in $\hat{c}\in C$. Synthesis and Characterization of $1,5\hat{a}\in C$ initro $\hat{c}\in C$ in	(DINOTNDI).	3
88	Crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5·5·0·05·9·03·11]dodecane hydrate, C6H8N12O13. Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 491-492.	^{1/} 8.1	3
89	Miscibility, Glass Transition Temperature and Mechanical Properties of NC/DBP Binary Systems by Molecular Dynamics. Propellants, Explosives, Pyrotechnics, 2018, 43, 559-567.	1.0	3
90	Synthesis of a Series of Dual-Functional Chelated Titanate Bonding Agents and Their Application Performances in Composite Solid Propellants. Molecules, 2020, 25, 5353.	1.7	3

#	Article	IF	CITATIONS
91	Molecular design of energetic tetrazine-triazole derivatives. Journal of Molecular Modeling, 2021, 27, 98.	0.8	3
92	Kristallographie - New Crystal Structures, 2015, 230, 225-226.	0.1	2
93	The crystal structure and thermal analysis of ZTO and its solvent adducts. Research on Chemical Intermediates, 2016, 42, 4333-4340.	1.3	2
94	Dissolution properties of 5,5′-bistetrazole-1, 1′-dihydroxy and disodium 5,5′-bistetrazole-1, 1′-diolate in dimethyl sulfoxide. Journal of Thermal Analysis and Calorimetry, 2017, 128, 615-620.	¹ 2.0	2
95	Preparation, crystal structure, thermal behavior and DFT calculations of two acetyl triazolone derviatives. Journal of Molecular Structure, 2017, 1146, 32-38.	1.8	2
96	Thermal decomposition and thermal kinetic simulation of ammonium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole). Journal of Thermal Analysis and Calorimetry, 2020, 146, 911.	2.0	2
97	Shock Initiation Investigation of a Pressed Trinitrotoluene Explosive. Propellants, Explosives, Pyrotechnics, 2021, 46, 1717.	1.0	2
98	Investigation of the effect of the CAB/A3 system on HNIW-based PBXs using molecular dynamics. Journal of Molecular Modeling, 2018, 24, 186.	0.8	1
99	Chemical synthesis of chitosan-mimetic polymers <i>via</i> ring-opening metathesis polymerization and their applications in Cu ²⁺ adsorption and catalytic decomposition. Polymer Chemistry, 2020, 11, 6688-6700.	1.9	1
100	Organic-Inorganic Artificial Ion Channel Polyvinylidene Fluoride Membranes for Controllable Selectivity Transport of Alkali Metal Cations. Membranes, 2020, 10, 174.	1.4	1
101	Design and properties of N,N'-linked bis-1,2,4-triazoles compounds as promising energetic materials. Journal of Molecular Modeling, 2020, 26, 130.	0.8	1
102	Decompression Process of Glycerol Shock Treatment Can Overcome Endo-Lysosomal Barriers for Intracellular Delivery. ACS Omega, 2020, 5, 33133-33139.	1.6	1
103	A novel ternary energetic compound: DAF/DNP/H2O cocrystal. Journal of Energetic Materials, 0, , 1-13.	1.0	1
104	Improved corrosion resistance and thermal stability of insensitive NTO explosives by MXene modification in the presence of non-covalent bonds. New Journal of Chemistry, 2022, 46, 9389-9396.	1.4	1
105	An interesting 3D energetic metal - framework based Ag(I) ions and 3,4-diaminofurazan. Journal of Energetic Materials, 0, , $1-13$.	1.0	1
106	Crystal structure of hexaaquamagnesium(II) 5,5′-bitetrazole-1,1′-diolate, C2H12N8O8Mg. Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 305-306.	0.1	0
107	Crystal structure of tetraqua((E)-4,4′-(diazene-1,2-diyl)bis(5-oxo-4,5-dihydro-1,2,4-triazol-1-ide)-ΰ2N:O)barium(II), C4H10N8O6Ba. Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 503-504.	0.1	O
108	Crystal structure of (E)-4,4′-(diazene-1,2-diyl)bis(1-nitro-1H-1,2,4-triazol-5(4H)-one)—acetonitrile (1:1), C ₆ H ₅ N ₁₁ O ₆ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 677-678.	0.1	O

#		Article	IF	CITATIONS
10	09	Thermal decomposition kinetics and thermal hazards simulation of sodium and rubidium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole). Journal of Thermal Analysis and Calorimetry, 2021, 146, 717-724.	2.0	O
11	10	The influences of plasticizer B2 mass fraction on the performances of CAB / B2 polymer composite materials: Combining experiments and simulations. Journal of Vinyl and Additive Technology, 2021, 27, 36-46.	1.8	0
11	11	The influence of temperature environmental on performance of HNIW/FOX-7 based PBXs. Scientific Reports, 2022, 12, 4988.	1.6	0