
## Liangliang Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9554938/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Uncovering the Metabolic Origin of Aspartate for Tumor Growth Using an Integrated Molecular<br>Deactivator. Nano Letters, 2021, 21, 778-784.                                                                                                               | 4.5  | 13        |
| 2  | Lanthanide-doped nanoparticles in photovoltaics – more than just upconversion. Journal of Materials<br>Chemistry C, 2021, 9, 16110-16131.                                                                                                                  | 2.7  | 19        |
| 3  | Multiphoton Upconversion Enhanced by Deep Subwavelength Near-Field Confinement. Nano Letters, 2021, 21, 3044-3051.                                                                                                                                         | 4.5  | 48        |
| 4  | Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles. Nature Nanotechnology, 2021, 16, 975-980.                                                                                              | 15.6 | 50        |
| 5  | Photon upconversion through triplet exciton-mediated energy relay. Nature Communications, 2021, 12, 3704.                                                                                                                                                  | 5.8  | 38        |
| 6  | (INVITED) Opposing effects of energy migration and cross-relaxation on surface sensitivity of lanthanide-doped nanocrystals. Optical Materials: X, 2021, 12, 100104.                                                                                       | 0.3  | 3         |
| 7  | Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation<br>of 7â€Fold to 8â€Fold Interpenetrated Metal–Organic Frameworks (MOFs). Angewandte Chemie, 2020, 132,<br>843-848.                                           | 1.6  | 36        |
| 8  | Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation<br>of 7â€Fold to 8â€Fold Interpenetrated Metal–Organic Frameworks (MOFs). Angewandte Chemie -<br>International Edition, 2020, 59, 833-838.                    | 7.2  | 52        |
| 9  | Designing Subâ€2â€nm Organosilica Nanohybrids for Farâ€Field Superâ€Resolution Imaging. Angewandte<br>Chemie, 2020, 132, 756-761.                                                                                                                          | 1.6  | 3         |
| 10 | Designing Subâ€2 nm Organosilica Nanohybrids for Farâ€Field Superâ€Resolution Imaging. Angewandte<br>Chemie - International Edition, 2020, 59, 746-751.                                                                                                    | 7.2  | 19        |
| 11 | Innenrücktitelbild: Giant Enhancement of Second Harmonic Generation Accompanied by the<br>Structural Transformation of 7â€Fold to 8â€Fold Interpenetrated Metal–Organic Frameworks (MOFs)<br>(Angew. Chem. 2/2020). Angewandte Chemie, 2020, 132, 971-971. | 1.6  | 0         |
| 12 | Upconversion Nanoparticle Powered Microneedle Patches for Transdermal Delivery of siRNA.<br>Advanced Healthcare Materials, 2020, 9, e1900635.                                                                                                              | 3.9  | 57        |
| 13 | Delicate manipulation of cobalt oxide nanodot clusterization on binder-free TiO2-nanorod photoanodes for efficient photoelectrochemical catalysis. Journal of Alloys and Compounds, 2020, 820, 153139.                                                     | 2.8  | 5         |
| 14 | Architecting epitaxial-lattice-mismatch-free (LMF) zinc oxide/bismuth oxyiodide<br>nano-heterostructures for efficient photocatalysis. Journal of Materials Chemistry C, 2020, 8,<br>11263-11273.                                                          | 2.7  | 19        |
| 15 | Solution-Processed Mixed-Dimensional Hybrid Perovskite/Carbon Nanotube Electronics. ACS Nano, 2020, 14, 3969-3979.                                                                                                                                         | 7.3  | 30        |
| 16 | Upconverting Nanorockers for Intracellular Viscosity Measurements During Chemotherapy. Advanced<br>Biology, 2019, 3, e1900082.                                                                                                                             | 3.0  | 12        |
| 17 | Laser‣plashed Plasmonic Nanocrater for Ratiometric Upconversion Regulation and Encryption.<br>Advanced Optical Materials, 2019, 7, 1900610.                                                                                                                | 3.6  | 19        |
| 18 | Upconversion amplification through dielectric superlensing modulation. Nature Communications, 2019 10 1391                                                                                                                                                 | 5.8  | 114       |

LIANGLIANG LIANG

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Suppression of Defect-Induced Quenching via Chemical Potential Tuning: A Theoretical Solution for<br>Enhancing Lanthanide Luminescence. Journal of Physical Chemistry C, 2019, 123, 11151-11161.                            | 1.5  | 26        |
| 20 | Upconversion superburst with sub-2 μs lifetime. Nature Nanotechnology, 2019, 14, 1110-1115.                                                                                                                                 | 15.6 | 130       |
| 21 | Energy Flux Manipulation in Upconversion Nanosystems. Accounts of Chemical Research, 2019, 52, 228-236.                                                                                                                     | 7.6  | 82        |
| 22 | Efficient nano-regional photocatalytic heterostructure design via the manipulation of reaction site self-quenching effect. Applied Catalysis B: Environmental, 2019, 243, 220-228.                                          | 10.8 | 19        |
| 23 | Nanocrystals feel the heat. Nature Photonics, 2018, 12, 124-125.                                                                                                                                                            | 15.6 | 34        |
| 24 | Lightâ€Activated Upconverting Spinners. Advanced Optical Materials, 2018, 6, 1800161.                                                                                                                                       | 3.6  | 13        |
| 25 | All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561, 88-93.                                                                                                                                               | 13.7 | 1,274     |
| 26 | Ultrahigh Carrier Mobility Achieved in Photoresponsive Hybrid Perovskite Films via Coupling with<br>Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2017, 29, 1602432.                                                 | 11.1 | 106       |
| 27 | Confining Excitation Energy in Er <sup>3+</sup> â€Sensitized Upconversion Nanocrystals through<br>Tm <sup>3+</sup> â€Mediated Transient Energy Trapping. Angewandte Chemie - International Edition, 2017,<br>56, 7605-7609. | 7.2  | 259       |
| 28 | Confining Excitation Energy in Er <sup>3+</sup> ‣ensitized Upconversion Nanocrystals through<br>Tm <sup>3+</sup> â€Mediated Transient Energy Trapping. Angewandte Chemie, 2017, 129, 7713-7717.                             | 1.6  | 56        |
| 29 | STED Nanoscopy Goes Low Power. CheM, 2017, 2, 331-333.                                                                                                                                                                      | 5.8  | 6         |
| 30 | Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nature Communications, 2017, 8, 899.                                                                                 | 5.8  | 290       |
| 31 | Designing Upconversion Nanocrystals Capable of 745â€nm Sensitization and 803â€nm Emission for<br>Deepâ€∓issue Imaging. Chemistry - A European Journal, 2016, 22, 10801-10807.                                               | 1.7  | 34        |
| 32 | Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nature<br>Communications, 2016, 7, 13059.                                                                                          | 5.8  | 164       |
| 33 | A novel glowing electrolyte based on perylene accompany with spectrum compensation function for efficient dye sensitized solar cells. Journal of Power Sources, 2015, 280, 430-434.                                         | 4.0  | 8         |
| 34 | Constructing hierarchical fastener-like spheres from anatase TiO2 nanosheets with exposed {001} facets for high-performance dye-sensitized solar cells. Journal of Power Sources, 2014, 262, 86-92.                         | 4.0  | 31        |
| 35 | Enhance the performance of dye-sensitized solar cells by balancing the light harvesting and electron collecting efficiencies of scattering layer based photoanodes. Electrochimica Acta, 2014, 132, 25-30.                  | 2.6  | 15        |
| 36 | Double-shell β-NaYF4:Yb3+, Er3+/SiO2/TiO2 submicroplates as a scattering and upconverting layer for efficient dye-sensitized solar cells. Chemical Communications, 2013, 49, 3958.                                          | 2.2  | 75        |

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effects of Bis(imidazolium) Molten Salts with Different Substituents of Imidazolium Cations on the<br>Performance of Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5,<br>3356-3361.                                                                  | 4.0  | 25        |
| 38 | Highly Transparent Carbon Counter Electrode Prepared via an in Situ Carbonization Method for<br>Bifacial Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 7432-7438.                                                                                           | 4.0  | 67        |
| 39 | Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes.<br>Journal of Power Sources, 2013, 224, 168-173.                                                                                                                                     | 4.0  | 72        |
| 40 | Highly Uniform, Bifunctional Core/Doubleâ€Shellâ€Structured βâ€NaYF <sub>4</sub> :Er <sup>3+</sup> ,<br>Yb <sup>3+</sup> @ SiO <sub>2</sub> @TiO <sub>2</sub> Hexagonal Subâ€microprisms for<br>Highâ€Performance Dye Sensitized Solar Cells. Advanced Materials, 2013, 25, 2174-2180. | 11.1 | 221       |
| 41 | Dye-sensitized solar cells enhanced by optical absorption, mediated by TiO2 nanofibers and plasmonics<br>Ag nanoparticles. Electrochimica Acta, 2013, 112, 458-464.                                                                                                                    | 2.6  | 34        |