B Parsa Moghaddam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9554723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay. Communications in Nonlinear Science and Numerical Simulation, 2021, 92, 105475.	1.7	20
2	Numerical simulation of the Hurst index of solutions of fractional stochastic dynamical systems driven by fractional Brownian motion. Journal of Computational and Applied Mathematics, 2021, 386, 113210.	1.1	12
3	Computational technique for a class of nonlinear distributed-order fractional boundary value problems with singular coefficients. Computational and Applied Mathematics, 2021, 40, 1.	1.0	2
4	A class of computational approaches for simulating fractional functional differential equations via Dickson polynomials. Chaos, Solitons and Fractals, 2021, 152, 111407.	2.5	0
5	Sufficient conditions for existence and uniqueness of fractional stochastic delay differential equations. Stochastics, 2020, 92, 379-396.	0.6	23
6	A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay. Numerical Algorithms, 2020, 83, 987-1006.	1.1	25
7	Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations. Communications in Nonlinear Science and Numerical Simulation, 2020, 82, 104985.	1.7	54
8	A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials. , 2020, 49, 974-983.	0.3	3
9	A Linear B-Spline Approximation for a Class of Nonlinear Time and Space Fractional Partial Differential Equations. Advances in Dynamics, Patterns, Cognition, 2020, , 67-85.	0.2	0
10	Computational scheme for solving nonlinear fractional stochastic differential equations with delay. Stochastic Analysis and Applications, 2019, 37, 893-908.	0.9	34
11	Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials. Computational and Applied Mathematics, 2019, 38, 1.	1.0	24
12	A numerical technique for variable-order fractional functional nonlinear dynamic systems. International Journal of Dynamics and Control, 2019, 7, 1350-1357.	1.5	6
13	Nystrom method for solution of fredholm integral equations of the second kind under interval data. Journal of Intelligent and Fuzzy Systems, 2019, 36, 2807-2816.	0.8	3
14	Numerical approach for a class of distributed order time fractional partial differential equations. Applied Numerical Mathematics, 2019, 136, 152-162.	1.2	39
15	Application of variable-order fractional calculus in solid mechanics. , 2019, , 207-224.		22
16	A numerical approach for solving a class of variable-order fractional functional integral equations. Computational and Applied Mathematics, 2018, 37, 4821-4834.	1.3	37
17	Optimal variable-order fractional PID controllers for dynamical systems. Journal of Computational and Applied Mathematics, 2018, 339, 40-48.	1.1	120
18	A Robust Algorithm for Nonlinear Variable-Order Fractional Control Systems with Delay.	0.4	30

B Parsa Moghaddam

#	Article	IF	CITATIONS
19	A computationally efficient method for tempered fractional differential equations with application. Computational and Applied Mathematics, 2018, 37, 3657-3671.	1.3	35
20	Computational technique for simulating variable-order fractional Heston model with application in US stock market. Mathematical Sciences, 2018, 12, 277-283.	1.0	16
21	Numerical simulation of fractional-order dynamical systems in noisy environments. Computational and Applied Mathematics, 2018, 37, 6433-6447.	1.3	23
22	An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos, Solitons and Fractals, 2017, 102, 354-360.	2.5	43
23	SM-Algorithms for Approximating the Variable-Order Fractional Derivative of High Order. Fundamenta Informaticae, 2017, 151, 293-311.	0.3	29
24	Extended Algorithms for Approximating Variable Order Fractional Derivatives with Applications. Journal of Scientific Computing, 2017, 71, 1351-1374.	1.1	67
25	A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fractional Calculus and Applied Analysis, 2017, 20, 1023-1042.	1.2	54
26	A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Computers and Mathematics With Applications, 2017, 73, 1262-1269.	1.4	68
27	An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dynamics, 2017, 87, 815-826.	2.7	66
28	Time analysis of forced variable-order fractional Van der Pol oscillator. European Physical Journal: Special Topics, 2017, 226, 3803-3810.	1.2	23
29	Modified finite difference method for solving fractional delay differential equations. Boletim Da Sociedade Paranaense De Matematica, 2017, 35, 49-58.	0.4	31
30	An Extended Predictor–Corrector Algorithm for Variable-Order Fractional Delay Differential Equations. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	50
31	Highly Accurate Scheme for the Cauchy Problem of the Generalized Burgers-Huxley Equation. Acta Polytechnica Hungarica, 2016, 13, .	2.5	4
32	A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations. Ain Shams Engineering Journal, 2014, 5, 585-594.	3.5	33
33	A numerical method based on finite difference for solving fractional delay differential equations. Journal of Taibah University for Science, 2013, 7, 120-127.	1.1	54