M A Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9554408/publications.pdf Version: 2024-02-01

ΝΛ Α Αιτ

#	Article	IF	CITATIONS
1	Theoretical investigation of structural, elastic, and electronic properties of ternary boride MoAlB. Physica Status Solidi (B): Basic Research, 2017, 254, 1700010.	0.7	113
2	First hafnium-based MAX phase in the 312 family, Hf3AlC2: A first-principles study. Journal of Alloys and Compounds, 2017, 727, 616-626.	2.8	95
3	Physical properties of new MAX phase borides M2SB (M = Zr, Hf and Nb) in comparison with conventional MAX phase carbides M2SC (M = Zr, Hf and Nb): Comprehensive insights. Journal of Materials Research and Technology, 2021, 11, 1000-1018.	2.6	70
4	Recently synthesized (Zr1-xTix)2AlC (0 â‰≇€¯x â‰≇€¯1) solid solutions: Theoretical study of the effects of I mixing on physical properties. Journal of Alloys and Compounds, 2018, 743, 146-154.	M _{2.8}	69
5	Ternary boride Hf3PB4: Insights into the physical properties of the hardest possible boride MAX phase. Journal of Alloys and Compounds, 2021, 857, 158264.	2.8	59
6	Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique. Journal of Magnetism and Magnetic Materials, 2017, 424, 148-154.	1.0	57
7	Newly synthesized Zr 2 AlC, Zr 2 (Al 0.58 Bi 0.42)C, Zr 2 (Al 0.2 Sn 0.8)C, and Zr 2 (Al 0.3 Sb 0.7)C MAX phases: A DFT based first-principles study. Computational Materials Science, 2017, 131, 139-145.	1.4	56
8	Effects of transition metals on physical properties of M2BC (M = V, Nb, Mo and Ta): A DFT calculation. Journal of Alloys and Compounds, 2019, 770, 523-534.	2.8	46
9	First principles study of M2InC (M = Zr, Hf and Ta) MAX phases: The effect of M atomic species. Results in Physics, 2018, 11, 869-876.	2.0	45
10	DFT insights into new B-containing 212 MAX phases: Hf2AB2 (A = In, Sn). Journal of Alloys and Compounds, 2021, 860, 158408.	2.8	45
11	Recently synthesized (Ti _{1â^'x} Mo _x) ₂ AlC (0 ≤i>x ≤0.20) solid solutions: deciphering the structural, electronic, mechanical and thermodynamic properties <i>via ab initio</i> simulations. RSC Advances, 2020, 10, 31535-31546.	1.7	41
12	An <i>ab initio</i> investigation of vibrational, thermodynamic, and optical properties of Sc _{2} AlC MAX compound. Chinese Physics B, 2016, 25, 103102.	0.7	40
13	Structural Properties, Impedance Spectroscopy and Dielectric Spin Relaxation of Ni-Zn Ferrite Synthesized by Double Sintering Technique. Journal of Scientific Research, 2015, 7, 65-75.	0.2	39
14	Firstâ€Principles Study of Superconducting ScRhP and ScIrP pnictides. Physica Status Solidi (B): Basic Research, 2017, 254, 1700336.	0.7	39
15	Predicted MAX Phase Sc ₂ InC: Dynamical Stability, Vibrational and Optical Properties. Physica Status Solidi (B): Basic Research, 2018, 255, 1700235.	0.7	39
16	Study of physical properties towards optimizing sintering temperature of Y-substituted Mg-Zn ferrites. Results in Physics, 2019, 14, 102517.	2.0	35
17	Tailoring the properties of Ni-Zn-Co ferrites by Gd3+ substitution. Journal of Magnetism and Magnetic Materials, 2020, 497, 165978.	1.0	35
18	First-principles study of elastic, electronic, optical and thermoelectric properties of newly synthesized K2Cu2GeS4 chalcogenide. Journal of Alloys and Compounds, 2019, 781, 37-46.	2.8	34

M A Ali

#	Article	IF	CITATIONS
19	Comparative study of Mo ₂ Ga ₂ C with superconducting <i>MAX</i> phase Mo ₂ GaC: First-principles calculations. Chinese Physics B, 2017, 26, 033102.	0.7	32
20	Ni-rich Nitrides ANNi ₃ (A = Pt, Ag, Pd) in Comparison with Superconducting ZnNNi ₃ . Journal of Scientific Research, 2011, 4, 1.	0.2	31
21	Elastic, thermodynamic and optical behavior of V2AC (A= Al, Ga) MAX phases. Results in Physics, 2017, 7, 3634-3639.	2.0	31
22	Sulvanite Compounds Cu ₃ TMS ₄ (TM = V, Nb and Ta): Elastic, Electronic, Optical and Thermal Properties using First-principles Method. Journal of Scientific Research, 2014, 6, 407-419.	0.2	30
23	Origin of high hardness and optoelectronic and thermo-physical properties of boron-rich compounds B6X (X = S, Se): A comprehensive study via DFT approach. Journal of Applied Physics, 2021, 129, .	1.1	28
24	New MAX Phase Compound Mo ₂ TiAlC ₂ : First-principles Study. Journal of Scientific Research, 2016, 8, 109-117.	0.2	27
25	Newly synthesized MAX phase Zr ₂ SeC: DFT insights into physical properties towards possible applications. RSC Advances, 2021, 11, 16892-16905.	1.7	25
26	Screen the thermomechanical and optical properties of the new ductile 314 MAX phase boride Zr3CdB4: A DFT insight. Journal of Alloys and Compounds, 2021, 877, 160248.	2.8	25
27	Sn1â^'xBixO2 and Sn1â^'xTaxO2 (0≤≩.75): A first-principles study. Physica B: Condensed Matter, 2012, 40 1020-1026.	7 _{1.3}	23
28	Enhanced dielectric properties of prospective Bi0.85Gd0.15Fe1â^'Cr O3 multiferroics. Results in Physics, 2019, 12, 1653-1659.	2.0	21
29	DFT insights into the new Hf-based chalcogenide MAX phase Hf2SeC. Vacuum, 2022, 201, 111072.	1.6	20
30	First-principles Study of Vickers Hardness and Thermodynamic Properties of Ti ₃ SnC ₂ Polymorphs. Journal of Scientific Research, 2015, 7, 53-64.	0.2	19
31	Yttrium-substituted Mg–Zn ferrites: correlation of physical properties with Yttrium content. Journal of Materials Science: Materials in Electronics, 2019, 30, 13258-13270.	1.1	19
32	Mechanical behavior, enhanced dc resistivity, energy band gap and high temperature magnetic properties of Y-substituted Mg–Zn ferrites. Materials Research Express, 2020, 7, 036101.	0.8	19
33	Structural, elastic, electronic and optical properties of Cu3MTe4 (M = Nb, Ta) sulvanites — An <i>abÂinitio</i> study. International Journal of Modern Physics B, 2016, 30, 1650089.	1.0	18
34	Newly Synthesized Three-Dimensional Boron-Rich Chalcogenides B ₁₂ X (X = S and Se): Theoretical Characterization of the Physical Properties for Optoelectronic and Mechanical Applications. ACS Omega, 2021, 6, 33899-33913.	1.6	17
35	Dielectric and optical properties of Ni-doped LaFeO3 nanoparticles. SN Applied Sciences, 2019, 1, 1.	1.5	16
36	First-principles study of SnO under high pressure. International Journal of Modern Physics B, 2016, 30, 1650228.	1.0	14

#	Article	IF	CITATIONS
37	Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe ₂ O ₃ , and SnO ₂ . Chinese Physics B, 2017, 26, 077501.	0.7	13
38	Impact of V substitution on the physical properties of Ni–Zn–Co ferrites: structural, magnetic, dielectric and electrical properties. Materials Research Express, 2021, 8, 046102.	0.8	13
39	Understanding the improvement of thermo-mechanical and optical properties of 212 MAX phase borides Zr2AB2 (A = In, Tl). Journal of Materials Research and Technology, 2021, 15, 2227-2241.	2.6	12

40 Dynamical stability, vibrational, and optical properties of anti-perovskite <i>A</i>3<i>BX</i>(Ti3TlN,) Tj ETQq0 0 0 gBT /Overlock 10 Tf

41	Newly Synthesized Taa€Based MAX Phase (Ta _{1â[°]<i>x</i>} Hf _{<i>x</i>}) ₄ AlC ₃ and (Ta _{1â[°]<i>x</i>} Hf _{<i>x</i>}) ₄ Al _{0.5} Sn _{0.5} C _{2 (0â€‰â‰æ€‰> x > x}	3< ∕s.ız b> İynamic	11
42	NaInX2 (X = S, Se) layered materials for energy harvesting applications: first-principles insights into optoelectronic and thermoelectric properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 3878-3893.	1.1	9
43	Influence of Se doping on recently synthesized NaInS2-xSex solid solutions for potential thermo-mechanical applications studied via first-principles method. Materials Today Communications, 2021, 26, 101988.	0.9	9
44	Physical properties of predicted MAX phase borides Hf2AB (A = Pb, Bi): A DFT insight. Materials Today Communications, 2021, 27, 102411.	0.9	9
45	Impact of Sn4+ substitution in Mg–Zn ferrites: Deciphering the structural, morphological, dielectric, electrical and magnetic properties. Materials Chemistry and Physics, 2021, 263, 124357.	2.0	8
46	Comparative study of predicted MAX phase Hf2AlN with recently synthesized Hf2AlC: a first principle calculations. Indian Journal of Physics, 2022, 96, 1321-1333.	0.9	6
47	Effect of sintering temperature on structural and magnetic properties of Ni ₀ . ₆ Zn ₀ . ₄ Fe ₂ O ₄ ferrite: synthesized from nanocrystalline powders. Journal of Physics: Conference Series, 2021, 1718, 012013.	0.3	4
48	Optoelectronic, thermodynamic and vibrational properties of intermetallic MgAl2Ge2: a first-principles study. SN Applied Sciences, 2021, 3, 1.	1.5	2
49	Mechanical, optical and high-temperature magnetic properties of Sn-substituted Mg–Zn ferrites. Phase Transitions, 2021, 94, 23-36.	0.6	2