
Claudia I Vallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9554142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the emulsifying system to obtain linseed oil-filled microcapsules with a robust poly (melamine-formaldehyde)-based shell. Progress in Organic Coatings, 2019, 129, 236-246.	1.9	19
2	Novel hydrogels based on a highâ€molarâ€mass waterâ€soluble dimethacrylate monomer. Polymer International, 2018, 67, 606-614.	1.6	1
3	Absorber materials based on polymer nanocomposites containing silver nanoparticles for solar thermal collectors. Solar Energy, 2018, 174, 640-647.	2.9	13
4	Thermal degradation of visible-light-cured thiol-methacrylate networks photoactivated with Camphorquinone. Polymer Degradation and Stability, 2017, 137, 244-250.	2.7	1
5	Facile preparation of silver-based nanocomposites via thiol-methacrylate â€~click' photopolymerization. European Polymer Journal, 2016, 79, 163-175.	2.6	5
6	Effect of the preparation method on the structure of linseed oil-filled poly(urea-formaldehyde) microcapsules. Progress in Organic Coatings, 2016, 97, 194-202.	1.9	33
7	Measurement of shrinkage during photopolymerization of methacrylate resins by interferometric techniques: Local and global analyses. Polymer Testing, 2016, 50, 262-269.	2.3	2
8	Photopolymerization of pyrrole/methacrylate mixtures using α-cleavage type photoinitiators in combination with iodonium salt. Synthetic Metals, 2015, 209, 304-312.	2.1	15
9	Enhanced degree of polymerization of methacrylate and epoxy resins by plasmonic heating of embedded silver nanoparticles. Progress in Organic Coatings, 2015, 88, 220-227.	1.9	13
10	Synthesis of silver nanoparticles in surfactant-free light-cured methacrylate resins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 466, 115-124.	2.3	6
11	Hybrid organic–inorganic macromolecular photoinitiator system for visible-light photopolymerization. Progress in Organic Coatings, 2014, 77, 1848-1853.	1.9	6
12	Visible light polymerization of epoxy monomers using an iodonium salt with camphorquinone/ethyl-4-dimethyl aminobenzoate. Polymer International, 2013, 62, 1368-1376.	1.6	44
13	Encapsulants for lightâ€emitting diodes from visible lightâ€eured epoxy monomers. Polymers for Advanced Technologies, 2013, 24, 430-436.	1.6	5
14	Monitoring of visible light photopolymerization of an epoxy/dimethacrylate hybrid system by Raman and near-infrared spectroscopies. Polymer Testing, 2013, 32, 1283-1289.	2.3	14
15	Polymerization of methacrylate resins photoinitiated by camphorquinone and bulky amine-functionalized silsesquioxanes. Journal of Materials Science, 2012, 47, 6665-6672.	1.7	2
16	Photopolymerization of methacrylate monomers using polyhedral silsesquioxanes bearing side-chain amines as photoinitiator. European Polymer Journal, 2012, 48, 309-317.	2.6	6
17	Efficiency of 2,2â€dimethoxyâ€2â€phenylacetophenone for the photopolymerization of methacrylate monomers in thick sections. Journal of Applied Polymer Science, 2012, 123, 418-425.	1.3	48
18	Prepolymerized organic–inorganic hybrid nanoparticles as fillers for light-cured methacrylate monomers. Journal of Materials Science, 2012, 47, 2951-2959.	1.7	9

Claudia I Vallo

#	Article	IF	CITATIONS
19	Photopolymerization Kinetics and Dynamic Mechanical Properties of Silanes Hydrolyzed without Evolution of Byproducts. Tetrakis[(methacryloyloxy)ethoxy]silaneâ^'Diethylene Glycol Dimethacrylate. Macromolecules, 2011, 44, 1792-1800.	2.2	14
20	Characterization of light-cured dimethacrylate resins modified with silsesquioxanes. Journal of Materials Science, 2011, 46, 2308-2317.	1.7	8
21	Preparation and characterization of light ured methacrylate/montmorillonite nanocomposites. Polymer International, 2011, 60, 247-254.	1.6	21
22	Efficiency of 4,4′â€bis(<i>N</i> , <i>N</i> â€diethylamino) benzophenone for the polymerization of dimethacrylate resins in thick sections. Polymer International, 2011, 60, 1362-1369.	1.6	5
23	Synthesis of silsesquioxanes based in (3-methacryloxypropyl)-trimethoxysilane using methacrylate monomers as reactive solvents. European Polymer Journal, 2010, 46, 1815-1823.	2.6	15
24	Influence of thermal expansion on shrinkage during photopolymerization of dental resins based on bis-GMA/TEGDMA. Dental Materials, 2009, 25, 103-114.	1.6	41
25	Photobleaching of camphorquinone during polymerization of dimethacrylate-based resins. Dental Materials, 2009, 25, 1603-1611.	1.6	72
26	Impact of radiation attenuation and temperature evolution on monomer conversion of dimethacrylateâ€based resins with a photobleaching photoinitiator. Polymer Engineering and Science, 2009, 49, 2225-2233.	1.5	4
27	Photoinitiation rate profiles during polymerization of a dimethacrylate-based resin photoinitiated with camphorquinone/amine. Influence of initiator photobleaching rate. European Polymer Journal, 2009, 45, 515-522.	2.6	36
28	Light absorbing products during polymerization of methacrylate monomers photoinitiated with phenyl-1,2-propanedione/amine. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 228-234.	2.0	12
29	Photopolymerization of N,N-dimethylaminobenzyl alcohol as amine co-initiator for light-cured dental resins. Dental Materials, 2008, 24, 686-693.	1.6	33
30	Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer. Optics Communications, 2007, 271, 581-586.	1.0	20
31	Monomer conversion in a light-cured dental resin containing 1-phenyl-1,2- propanedione photosensitizer. Polymer International, 2007, 56, 1099-1105.	1.6	19
32	Effect of different photoinitiator systems on conversion profiles of a model unfilled light-cured resin. Dental Materials, 2007, 23, 1313-1321.	1.6	69
33	Properties of acrylic bone cements formulated with Bis-GMA. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74B, 676-685.	1.6	15
34	Effect of Chemical Treatment on the Mechanical Properties of Starch-Based Blends Reinforced with Sisal Fibre. Journal of Composite Materials, 2004, 38, 1387-1399.	1.2	99
35	Flexural strength distribution of a PMMA-based bone cement. Journal of Biomedical Materials Research Part B, 2002, 63, 226-236.	3.0	18
36	Theoretical prediction and experimental determination of the effect of mold characteristics on temperature and monomer conversion fraction profiles during polymerization of a PMMA-based bone cement. Journal of Biomedical Materials Research Part B, 2002, 63, 627-642.	3.0	39

Claudia I Vallo

#	Article	IF	CITATIONS
37	Estimation of Weibull parameters for the flexural strength of PMMA-based bone cements. Polymer Engineering and Science, 2002, 42, 1260-1273.	1.5	19
38	Influence of load type on flexural strength of a bone cement based on PMMA. Polymer Testing, 2002, 21, 793-800.	2.3	28
39	Influence of pressurization on flexural strength distributions of PMMA-based bone cements. Journal of Materials Science: Materials in Medicine, 2002, 13, 1077-1081.	1.7	6
40	Residual monomer content in bone cements based on poly(methyl methacrylate). Polymer International, 2000, 49, 831-838.	1.6	34
41	Influence of filler content on static properties of glass-reinforced bone cement. Journal of Biomedical Materials Research Part B, 2000, 53, 717-727.	3.0	44
42	Polymethylmethacrylate-based bone cement modified with hydroxyapatite. , 1999, 48, 150-158.		121
43	Mechanical and Fracture Behaviour Evaluation of Commercial Acrylic Bone Cements. Polymer International, 1997, 43, 260-268.	1.6	29
44	Elastic modulus and yield stress of epoxy networks in the glassy state. Polymer Gels and Networks, 1993, 1, 257-266.	0.6	13
45	Statistics of free-radical polymerizations revisited using a fragment approach. 2. Polyfunctional monomers. Macromolecules. 1988. 21. 2571-2575.	2.2	13