Filip Cuyckens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9553885/publications.pdf

Version: 2024-02-01

82 papers

3,835 citations

168829 31 h-index 60 g-index

86 all docs 86 docs citations

86 times ranked 5494 citing authors

#	Article	IF	CITATIONS
1	Metabolism and disposition in rats, dogs, and humans of erdafitinib, an orally administered potent pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor. Xenobiotica, 2021, 51, 177-193.	0.5	8
2	Quantitative Mass Spectrometry Imaging to Study Drug Distribution in the Intestine Following Oral Dosing. Analytical Chemistry, 2021, 93, 2144-2151.	3.2	16
3	Evaluation of micropillar array columns for chromatographic separation of phosphorothioated oligonucleotides and their diastereomers. Analytical Science Advances, 2021, 2, 354-363.	1.2	5
4	Multimodal biomarker discovery for active Onchocerca volvulus infection. PLoS Neglected Tropical Diseases, 2021, 15, e0009999.	1.3	4
5	Evaluation of table-top lasers for routine infrared ion spectroscopy in the analytical laboratory. Analyst, The, 2021, 146, 7218-7229.	1.7	10
6	Infrared ion spectroscopy: New opportunities for small-molecule identification in mass spectrometry - A tutorial perspective. Analytica Chimica Acta, 2020, 1093, 1-15.	2.6	57
7	2-Methyl-pentanoyl-carnitine (2-MPC): a urine biomarker for patent Ascaris lumbricoides infection. Scientific Reports, 2020, 10, 15780.	1.6	15
8	Toward simplified oral lipid-based drug delivery using mono-/di-glycerides as single component excipients. Drug Development and Industrial Pharmacy, 2020, 46, 2051-2060.	0.9	6
9	Mass spectrometry-based identification of <i>ortho</i> , <i>meta</i> - and <i>para</i> -isomers using infrared ion spectroscopy. Analyst, The, 2020, 145, 6162-6170.	1.7	13
10	Mass spectrometry in drug metabolism and pharmacokinetics: Current trends and future perspectives. Rapid Communications in Mass Spectrometry, 2019, 33, 90-95.	0.7	28
11	Strategies and analytical workflows to extend the dynamic range in quantitative LC–MS/MS analysis. Bioanalysis, 2019, 11, 1187-1204.	0.6	4
12	Development of a method for the quantitative metabolite profiling of pharmaceutical drugs using HPLC-ICP-MS following pre-column derivatization of their amino and hydroxyl groups using 4-aminopyridine as a model compound. Journal of Analytical Atomic Spectrometry, 2019, 34, 708-715.	1.6	3
13	Selective drug metabolite trace analysis by very high-volume injections and heartcut two-dimensional (2D)-ultrahigh performance liquid chromatography (UHPLC). Journal of Chromatography A, 2019, 1601, 164-170.	1.8	9
14	Ion mobility mass spectrometry: Small molecule applications. Rapid Communications in Mass Spectrometry, 2019, 33, 1-2.	0.7	1
15	Apalutamide Absorption, Metabolism, and Excretion in Healthy Men, and Enzyme Reaction in Human Hepatocytes. Drug Metabolism and Disposition, 2019, 47, 453-464.	1.7	26
16	Adduct ion formation as a tool for the molecular structure assessment of ten isomers in traveling wave and trapped ion mobility spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 49-59.	0.7	14
17	High-Resolution Mass Spectrometry Quantification: Impact of Differences in Data Processing of Centroid and Continuum Data. Journal of the American Society for Mass Spectrometry, 2019, 30, 203-212.	1.2	13
18	Optimization of flow splitting and makeâ€up flow conditions in liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 314-322.	0.7	10

#	Article	IF	Citations
19	Meet the Associate Editors: Filip Cuyckens. Rapid Communications in Mass Spectrometry, 2019, 33, 3-4.	0.7	O
20	A pre-column derivatization method allowing quantitative metabolite profiling of carboxyl and phenolic hydroxyl group containing pharmaceuticals in human plasma <i>via</i> liquid chromatography-inductively coupled plasma-tandem mass spectrometry (LC-ICP-MS/MS). Journal of Analytical Atomic Spectrometry, 2018, 33, 274-282.	1.6	3
21	Mass spectrometric recommendations for Quan/Qual analysis using liquid-chromatography coupled to quadrupole time-of-flight mass spectrometry. Analytica Chimica Acta, 2018, 1020, 62-75.	2.6	16
22	A tutorial in small molecule identification via electrospray ionizationâ€mass spectrometry: The practical art of structural elucidation. Mass Spectrometry Reviews, 2018, 37, 607-629.	2.8	154
23	Cross-Species Molecular Imaging of Bile Salts and Lipids in Liver: Identification of Molecular Structural Markers in Health and Disease. Analytical Chemistry, 2018, 90, 11835-11846.	3.2	22
24	Translational safety biomarkers of colonic barrier integrity in the rat. Journal of Applied Toxicology, 2018, 38, 1282-1292.	1.4	3
25	Montmorillonite and Laponite Clay Materials for the Solidification of Lipid-Based Formulations for the Basic Drug Blonanserin: In Vitro and in Vivo Investigations. Molecular Pharmaceutics, 2018, 15, 4148-4160.	2.3	17
26	Ionisation efficiencies can be predicted in complicated biological matrices: A proof of concept. Analytica Chimica Acta, 2018, 1032, 68-74.	2.6	13
27	Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization. Journal of the American Society for Mass Spectrometry, 2017, 28, 286-293.	1.2	17
28	An atmospheric pressure ionization source using a high voltage target compared to electrospray ionization for the LC/MS analysis of pharmaceutical compounds. Journal of Pharmaceutical and Biomedical Analysis, 2017, 142, 225-231.	1.4	15
29	Development and validation of a novel quantification approach for gradient elution reversed phase high-performance liquid chromatography coupled to tandem ICP-mass spectrometry (RP-HPLC-ICP-MS/MS) and its application to diclofenac and its related compounds. Analytica Chimica Acta, 2017, 974, 43-53.	2.6	24
30	Combined Liquid Chromatography-Infrared Ion Spectroscopy for Identification of Regioisomeric Drug Metabolites. Analytical Chemistry, 2017, 89, 4359-4362.	3.2	52
31	Quantitative Metabolite Profiling of an Amino Group Containing Pharmaceutical in Human Plasma via Precolumn Derivatization and High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2017, 89, 1907-1915.	3.2	7
32	Flexible nano- and microliter injections on a single liquid chromatography–mass spectrometry system: Minimizing sample preparation and maximizing linear dynamic range. Journal of Chromatography A, 2017, 1524, 101-107.	1.8	4
33	High sensitivity and selectivity in quantitative analysis of drugs in biological samples using 4-column multidimensional micro-UHPLC-MS enabling enhanced sample loading capacity. Analytica Chimica Acta, 2017, 989, 104-111.	2.6	6
34	<i>In vitro</i> and physiologicallyâ€based pharmacokinetic based assessment of drug–drug interaction potential of canagliflozin. British Journal of Clinical Pharmacology, 2017, 83, 1082-1096.	1.1	27
35	High-resolution laser ablation-inductively coupled plasma-mass spectrometry imaging of cisplatin-induced nephrotoxic side effects. Analytica Chimica Acta, 2016, 945, 23-30.	2.6	64
36	Mass Spectrometry Imaging of Drug Related Crystal-Like Structures in Formalin-Fixed Frozen and Paraffin-Embedded Rabbit Kidney Tissue Sections. Journal of the American Society for Mass Spectrometry, 2016, 27, 117-123.	1.2	35

#	Article	IF	CITATIONS
37	Determination of the total drug-related chlorine and bromine contents in human blood plasma using high performance liquid chromatography–tandem ICP-mass spectrometry (HPLC–ICP-MS/MS). Journal of Pharmaceutical and Biomedical Analysis, 2016, 124, 112-119.	1.4	29
38	Enhanced performance for the analysis of prostaglandins and thromboxanes by liquid chromatography-tandem mass spectrometry using a new atmospheric pressure ionization source. Journal of Chromatography A, 2016, 1440, 260-265.	1.8	25
39	One drop chemical derivatization – DESIâ€MS analysis for metabolite structure identification. Journal of Mass Spectrometry, 2015, 50, 871-878.	0.7	6
40	One drop chemical derivatization – DESIâ€MS analysis for metabolite structure identification. Journal of Mass Spectrometry, 2015, 50, ii.	0.7	0
41	Absorption, Metabolism, and Excretion of Oral ¹⁴ C Radiolabeled Ibrutinib: An Open-Label, Phase I, Single-Dose Study in Healthy Men. Drug Metabolism and Disposition, 2015, 43, 289-297.	1.7	110
42	Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation. AAPS Journal, 2015, 17, 1376-1387.	2.2	32
43	Physiology-Based IVIVE Predictions of Tramadol from in Vitro Metabolism Data. Pharmaceutical Research, 2015, 32, 260-274.	1.7	19
44	High volume injections of biological samples for sensitive metabolite profiling and quantitation. Journal of Chromatography A, 2014, 1372, 102-109.	1.8	17
45	Systematic evaluation of commercially available ultra-high performance liquid chromatography columns for drug metabolite profiling: Optimization of chromatographic peak capacity. Journal of Chromatography A, 2014, 1374, 122-133.	1.8	7
46	Metabolism and Excretion of Canagliflozin in Mice, Rats, Dogs, and Humans. Drug Metabolism and Disposition, 2014, 42, 903-916.	1.7	57
47	Characterization of Polar Organosulfates in Secondary Organic Aerosol from the Green Leaf Volatile 3- <i>Z</i> -Hexenal. Environmental Science & Environ	4.6	45
48	Quantitative LC-MS/MS analysis of azide and azidoalanine in in vitro samples following derivatisation with dansyl chloride. Analytical Methods, 2013, 5, 3136.	1.3	5
49	High-resolution MS: first choice for peptide quantification?. Bioanalysis, 2013, 5, 1145-1148.	0.6	12
50	Use of relative $\langle \sup 12 \langle \sup C < \sup 14 \langle \sup C $ isotope ratios to estimate metabolite concentrations in the absence of authentic standards. Bioanalysis, 2012, 4, 143-156.	0.6	10
51	Identifying metabolite ions of peptide drugs in the presence of an <i>in vivo</i> matrix background. Bioanalysis, 2012, 4, 595-604.	0.6	17
52	A pilot study on the use of laser ablation-ICP-mass spectrometry for assessing/mapping the distribution of a drug and its metabolites across the body compartments of rats. Journal of Analytical Atomic Spectrometry, 2012, 27, 413.	1.6	29
53	Comparison of triple quadrupole and high-resolution TOF-MS for quantification of peptides. Bioanalysis, 2012, 4, 565-579.	0.6	79
54	HPLC/ICP-MS in Combination with "Reverse―Online Isotope Dilution in Drug Metabolism Studies. Analytical Chemistry, 2012, 84, 2395-2401.	3.2	25

#	Article	IF	CITATIONS
55	Speciation analysis of bromine-containing drug metabolites in feces samples from a human in vivo study by means of HPLC/ICP-MS combined with on-line isotope dilution. Analytical and Bioanalytical Chemistry, 2012, 402, 439-448.	1.9	33
56	Antiprotozoal and antiangiogenic saponins from Apodytes dimidiata. Phytochemistry, 2011, 72, 1414-1423.	1.4	15
57	Product ion mobility as a promising tool for assignment of positional isomers of drug metabolites. Rapid Communications in Mass Spectrometry, 2011, 25, 3497-3503.	0.7	50
58	Rapid quantification of 14 saponins of Maesa lanceolata by UPLC–MS/MS. Talanta, 2010, 81, 1258-1263.	2.9	22
59	A comparison between HPLC-dynamic reaction cell-ICP-MS and HPLC-sector field-ICP-MS for the detection of glutathione-trapped reactive drug metabolites using clozapine as a model compound. Journal of Analytical Atomic Spectrometry, 2010, 25, 419.	1.6	24
60	Absorption, Metabolism, and Excretion of Darunavir, a New Protease Inhibitor, Administered Alone and with Low-Dose Ritonavir in Healthy Subjects. Drug Metabolism and Disposition, 2009, 37, 809-820.	1.7	73
61	In vitro studies on the metabolism of trabectedin (YONDELIS®) in monkey and man, including human CYP reaction phenotyping. Biochemical Pharmacology, 2009, 77, 1642-1654.	2.0	27
62	IsoScore: automated localization of biotransformations by mass spectrometry using product ion scoring of virtual regioisomers. Rapid Communications in Mass Spectrometry, 2009, 23, 39-50.	0.7	28
63	Extracting metabolite ions out of a matrix background by combined mass defect, neutral loss and isotope filtration. Rapid Communications in Mass Spectrometry, 2009, 23, 327-332.	0.7	49
64	Which Human Metabolites Have We MIST? Retrospective Analysis, Practical Aspects, and Perspectives For Metabolite Identification and Quantification in Pharmaceutical Development. Chemical Research in Toxicology, 2009, 22, 280-293.	1.7	119
65	Novel, Broad-Spectrum Anticonvulsants Containing a Sulfamide Group: Advancement of <i>N</i> -((Benzo[<i>b</i>]thien-3-yl)methyl)sulfamide (JNJ-26990990) into Human Clinical Studies. Journal of Medicinal Chemistry, 2009, 52, 7528-7536.	2.9	32
66	Use of the bromine isotope ratio in HPLC-ICP-MS and HPLC-ESI-MS analysis of a new drug in development. Analytical and Bioanalytical Chemistry, 2008, 390, 1717-1729.	1.9	66
67	Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/ (\hat{a}^{\cdot}) electrospray ionization mass spectrometry, 2008, 43, 371-382.	0.7	222
68	Improved liquid chromatographyâ€"Online radioactivity detection for metabolite profiling. Journal of Chromatography A, 2008, 1209, 128-135.	1.8	31
69	Disposition, Metabolism, and Excretion of [¹⁴ C]Doripenem after a Single 500-Milligram Intravenous Infusion in Healthy Men. Antimicrobial Agents and Chemotherapy, 2008, 52, 3478-3483.	1.4	41
70	Hyphenation of reverse-phase HPLC and ICP-MS for metabolite profiling—application to a novel antituberculosis compound as a case study. Analytical and Bioanalytical Chemistry, 2007, 389, 777-786.	1.9	32
71	Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules. Journal of Mass Spectrometry, 2005, 40, 364-372.	0.7	134
72	Structural characterization of flavonol di-O-glycosides fromFarsetia aegyptia by electrospray ionization and collision-induced dissociation mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 2172-2178.	0.7	34

#	Article	lF	CITATION
73	Fast high-performance liquid chromatography method for quality control of soy extracts. Journal of Chromatography A, 2004, 1038, 107-112.	1.8	36
74	Mass spectrometry in the structural analysis of flavonoids. Journal of Mass Spectrometry, 2004, 39, 1-15.	0.7	882
75	Characterization of metal complexes with metallothioneins in the liver of the carp Cyprinus carpio by reversed-phase HPLC with ICP-MS and electrospray ionization (ESI)-MS. Journal of Analytical Atomic Spectrometry, 2004, 19, 159.	1.6	23
76	Structural characterization of chromoneC-glucosides in a toxic herbal remedy. Rapid Communications in Mass Spectrometry, 2003, 17, 49-55.	0.7	23
77	The Application of Liquid Chromatography-Electrospray Ionization Mass Spectrometry and Collision-Induced Dissociation in the Structural Characterization of Acylated Flavonol O-Glycosides from the Seeds of Carrichtera Annua. European Journal of Mass Spectrometry, 2003, 9, 409-420.	0.5	32
78	Herbal remedy-associated acute renal failure secondary to Cape aloes. American Journal of Kidney Diseases, 2002, 39, e13.1-e13.5.	2.1	83
79	Direct stereochemical assignment of hexose and pentose residues in flavonoidO-glycosides by fast atom bombardment and electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2002, 37, 1272-1279.	0.7	48
80	Optimization of a liquid chromatography method based on simultaneous electrospray ionization mass spectrometric and ultraviolet photodiode array detection for analysis of flavonoid glycosides. Rapid Communications in Mass Spectrometry, 2002, 16, 2341-2348.	0.7	78
81	Mass spectrometric methods for the characterisation and differentiation of isomericO-diglycosyl flavonoids. Phytochemical Analysis, 2001, 12, 159-165.	1.2	107
82	Structure characterization of flavonoidO-diglycosides by positive and negative nano-electrospray ionization ion trap mass spectrometry. Journal of Mass Spectrometry, 2001, 36, 1203-1210.	0.7	225