
Charles L Sawyers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9553652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Research, 2022, 82, 1448-1460.	0.9	24
2	Allosteric interactions prime androgen receptor dimerization and activation. Molecular Cell, 2022, 82, 2021-2031.e5.	9.7	21
3	CD38 in Advanced Prostate Cancers. European Urology, 2021, 79, 736-746.	1.9	21
4	Correlation Between Surrogate End Points and Overall Survival in a Multi-institutional Clinicogenomic Cohort of Patients With Non–Small Cell Lung or Colorectal Cancer. JAMA Network Open, 2021, 4, e2117547.	5.9	20
5	Defining the therapeutic selective dependencies for distinct subtypes of PI3K pathway-altered prostate cancers. Nature Communications, 2021, 12, 5053.	12.8	14
6	Rapid interrogation of cancer cell of origin through CRISPR editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
7	Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1167-1179.	3.0	28
8	Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer. Cancer Cell, 2020, 38, 279-296.e9.	16.8	135
9	Linked Entity Attribute Pair (LEAP): A Harmonization Framework for Data Pooling. JCO Clinical Cancer Informatics, 2020, 4, 691-699.	2.1	2
10	FOXA1 Mutations Reveal Distinct Chromatin Profiles and Influence Therapeutic Response in Breast Cancer. Cancer Cell, 2020, 38, 534-550.e9.	16.8	67
11	Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for WNT Pathway Alterations in Prostate Cancer Metastasis. Cancer Discovery, 2020, 10, 1038-1057.	9.4	37
12	Oncogenic ERG Represses PI3K Signaling through Downregulation of IRS2. Cancer Research, 2020, 80, 1428-1437.	0.9	8
13	Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nature Reviews Clinical Oncology, 2020, 17, 360-371.	27.6	263
14	Characteristics and Outcome of <i>AKT1</i> E17K-Mutant Breast Cancer Defined through AACR Project GENIE, a Clinicogenomic Registry. Cancer Discovery, 2020, 10, 526-535.	9.4	36
15	Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science, 2020, 368, 497-505.	12.6	165
16	Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell, 2020, 37, 584-598.e11.	16.8	96
17	Modulation of androgen receptor DNA binding activity through direct interaction with the ETS transcription factor ERG. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8584-8592.	7.1	35
18	Sanjiv "Sam―Gambhir, MD, PhD: In Memoriam (1962–2020). Cancer Research, 2020, 80, 4305-4306.	0.9	0

#	Article	IF	CITATIONS
19	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	7.0	200
20	Prostate Organoid Cultures as Tools to Translate Genotypes and Mutational Profiles to Pharmacological Responses. Journal of Visualized Experiments, 2019, , .	0.3	13
21	Herceptin: A First Assault on Oncogenes that Launched a Revolution. Cell, 2019, 179, 8-12.	28.9	37
22	A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine, 2019, 25, 1607-1614.	30.7	320
23	FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature, 2019, 571, 408-412.	27.8	163
24	Genomic correlates of clinical outcome in advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11428-11436.	7.1	839
25	Disruption of MAGI2-RapGEF2-Rap1 signaling contributes to podocyte dysfunction in congenital nephrotic syndrome caused by mutations in MAGI2. Kidney International, 2019, 96, 642-655.	5.2	13
26	SMAD4 Loss in Colorectal Cancer Patients Correlates with Recurrence, Loss of Immune Infiltrate, and Chemoresistance. Clinical Cancer Research, 2019, 25, 1948-1956.	7.0	71
27	Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncology, 2019, 5, 471.	7.1	426
28	Strategies to Identify and Target Cells of Origin in Prostate Cancer. Journal of the National Cancer Institute, 2019, 111, 221-223.	6.3	4
29	GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance. ELife, 2019, 8, .	6.0	19
30	Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. European Urology, 2018, 73, 715-723.	1.9	105
31	The long tail of oncogenic drivers in prostate cancer. Nature Genetics, 2018, 50, 645-651.	21.4	601
32	Positron Emission Tomography/Computed Tomography–Based Assessments of Androgen Receptor Expression and Glycolytic Activity as a Prognostic Biomarker for Metastatic Castration-Resistant Prostate Cancer. JAMA Oncology, 2018, 4, 217.	7.1	93
33	Targeting DNA Repair in Prostate Cancer. Journal of Clinical Oncology, 2018, 36, 1017-1019.	1.6	4
34	Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. Journal of Clinical Investigation, 2018, 128, 4441-4453.	8.2	155
35	Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 257-276.	4.5	50
36	Patient derived organoids to model rare prostate cancer phenotypes. Nature Communications, 2018, 9, 2404.	12.8	246

#	Article	IF	CITATIONS
37	Challenges in validating candidate therapeutic targets in cancer. ELife, 2018, 7, .	6.0	25
38	Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. ELife, 2018, 7, .	6.0	217
39	<i>Rb1</i> and <i>Trp53</i> cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science, 2017, 355, 78-83.	12.6	767
40	<i>SOX2</i> promotes lineage plasticity and antiandrogen resistance in <i>TP53</i> - and <i>RB1</i> -deficient prostate cancer. Science, 2017, 355, 84-88.	12.6	759
41	Sharing Clinical and Genomic Data on Cancer — The Need for Global Solutions. New England Journal of Medicine, 2017, 376, 2006-2009.	27.0	35
42	ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature, 2017, 546, 671-675.	27.8	70
43	Deletion of 3p13-14 locus spanning FOXP1 to SHQ1 cooperates with PTEN loss in prostate oncogenesis. Nature Communications, 2017, 8, 1081.	12.8	16
44	Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing. JAMA - Journal of the American Medical Association, 2017, 318, 825.	7.4	366
45	Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. ELife, 2017, 6, .	6.0	154
46	Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precision Oncology, 2017, 2017, 1-16.	3.0	286
47	A Tmprss2-CreERT2 Knock-In Mouse Model for Cancer Genetic Studies on Prostate and Colon. PLoS ONE, 2016, 11, e0161084.	2.5	18
48	Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. New England Journal of Medicine, 2016, 375, 443-453.	27.0	1,205
49	Low CD38 Identifies Progenitor-like Inflammation-Associated Luminal Cells that Can Initiate Human Prostate Cancer and Predict Poor Outcome. Cell Reports, 2016, 17, 2596-2606.	6.4	94
50	Facilitating a culture of responsible and effective sharing of cancer genome data. Nature Medicine, 2016, 22, 464-471.	30.7	83
51	Applying ⁸⁹ Zr-Transferrin To Study the Pharmacology of Inhibitors to BET Bromodomain Containing Proteins. Molecular Pharmaceutics, 2016, 13, 683-688.	4.6	12
52	Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols, 2016, 11, 347-358.	12.0	487
53	Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 2015, 161, 1215-1228.	28.9	2,660
54	Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nature Reviews Cancer, 2015, 15, 701-711.	28.4	1,044

#	Article	IF	CITATIONS
55	Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors. Cell Reports, 2015, 13, 2147-2158.	6.4	74
56	Identifying Actionable Targets through Integrative Analyses of GEM Model and Human Prostate Cancer Genomic Profiling. Molecular Cancer Therapeutics, 2015, 14, 278-288.	4.1	29
57	All the World's a Stage: Facilitating Discovery Science and Improved Cancer Care through the Global Alliance for Genomics and Health. Cancer Discovery, 2015, 5, 1133-1136.	9.4	45
58	Androgen Receptor Upregulation Mediates Radioresistance after Ionizing Radiation. Cancer Research, 2015, 75, 4688-4696.	0.9	105
59	Identification of an oncogenic RAB protein. Science, 2015, 350, 211-217.	12.6	113
60	Feedback Suppression of PI3Kα Signaling in PTEN-Mutated Tumors Is Relieved by Selective Inhibition of PI3Kβ. Cancer Cell, 2015, 27, 109-122.	16.8	203
61	Copy number alteration burden predicts prostate cancer relapse. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11139-11144.	7.1	299
62	Reliable and Effective Diagnostics Are Keys to Accelerating Personalized Cancer Medicine and Transforming Cancer Care: A Policy Statement from the American Association for Cancer Research. Clinical Cancer Research, 2014, 20, 4978-4981.	7.0	16
63	SPOP Mutations in Prostate Cancer across Demographically Diverse Patient Cohorts. Neoplasia, 2014, 16, 14-W10.	5.3	145
64	MAGI-2 scaffold protein is critical for kidney barrier function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14876-14881.	7.1	38
65	Identification of Multipotent Luminal Progenitor Cells in Human Prostate Organoid Cultures. Cell, 2014, 159, 163-175.	28.9	609
66	Organoid Cultures Derived from Patients with Advanced Prostate Cancer. Cell, 2014, 159, 176-187.	28.9	1,184
67	CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes and Development, 2014, 28, 1800-1814.	5.9	167
68	The imperative to invest in science has never been greater. Journal of Clinical Investigation, 2014, 124, 3680-3681.	8.2	3
69	Development of novel metastatic prostate cancer cell lines by "organoid―in vitro culture technology Journal of Clinical Oncology, 2014, 32, 33-33.	1.6	0
70	ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nature Medicine, 2013, 19, 1023-1029.	30.7	251
71	Glucocorticoid Receptor Confers Resistance to Antiandrogens by Bypassing Androgen Receptor Blockade. Cell, 2013, 155, 1309-1322.	28.9	801
72	Imaging Tumor Burden in the Brain with ⁸⁹ Zr-Transferrin. Journal of Nuclear Medicine, 2013, 54, 90-95.	5.0	33

#	Article	IF	CITATIONS
73	Developing Standards for Breakthrough Therapy Designation in Oncology. Clinical Cancer Research, 2013, 19, 4297-4304.	7.0	25
74	Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers. Cancer Discovery, 2013, 3, 1245-1253.	9.4	421
75	Perspective: Combined forces. Nature, 2013, 498, S7-S7.	27.8	19
76	Overcoming mutation-based resistance to antiandrogens with rational drug design. ELife, 2013, 2, e00499.	6.0	334
77	β4 Integrin signaling induces expansion of prostate tumor progenitors. Journal of Clinical Investigation, 2013, 123, 682-99.	8.2	74
78	"N of 1―case reports in the era of whole-genome sequencing. Journal of Clinical Investigation, 2013, 123, 4568-4570.	8.2	35
79	Imaging Androgen Receptor Signaling with a Radiotracer Targeting Free Prostate-Specific Antigen. Cancer Discovery, 2012, 2, 320-327.	9.4	68
80	JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12046-12051.	7.1	85
81	Distinct Patterns of Dysregulated Expression of Enzymes Involved in Androgen Synthesis and Metabolism in Metastatic Prostate Cancer Tumors. Cancer Research, 2012, 72, 6142-6152.	0.9	175
82	Annotating MYC status with 89Zr-transferrin imaging. Nature Medicine, 2012, 18, 1586-1591.	30.7	83
83	ARN-509: A Novel Antiandrogen for Prostate Cancer Treatment. Cancer Research, 2012, 72, 1494-1503.	0.9	573
84	Converting Cancer Therapies into Cures: Lessons from Infectious Diseases. Cell, 2012, 148, 1089-1098.	28.9	159
85	In cancer drug resistance, germline matters too. Nature Medicine, 2012, 18, 494-496.	30.7	19
86	Modulators of Prostate Cancer Cell Proliferation and Viability Identified by Short-Hairpin RNA Library Screening. PLoS ONE, 2012, 7, e34414.	2.5	28
87	Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genetics, 2012, 44, 852-860.	21.4	1,049
88	Traversing the genomic landscape of prostate cancer from diagnosis to death. Nature Genetics, 2012, 44, 613-614.	21.4	20
89	The 2011 Gordon Wilson Lecture: overcoming resistance to targeted cancer drugs. Transactions of the American Clinical and Climatological Association, 2012, 123, 114-23; discussion 123-5.	0.5	10
90	Cancer drug development. Preface. Current Topics in Microbiology and Immunology, 2012, 355, v-vi.	1.1	0

#	Article	IF	CITATIONS
91	Frequent EVI1 translocations in myeloid blast crisis CML that evolves through tyrosine kinase inhibitors. Cancer Genetics, 2011, 204, 392-397.	0.4	29
92	FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature, 2011, 471, 523-526.	27.8	374
93	TMPRSS2-ERG Status in Circulating Tumor Cells as a Predictive Biomarker of Sensitivity in Castration-Resistant Prostate Cancer Patients Treated With Abiraterone Acetate. European Urology, 2011, 60, 897-904.	1.9	176
94	Reciprocal Feedback Regulation of PI3K and Androgen Receptor Signaling in PTEN-Deficient Prostate Cancer. Cancer Cell, 2011, 19, 575-586.	16.8	1,026
95	Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9578-9582.	7.1	268
96	Pretreatment EGFR T790M Mutation and BRCA1 mRNA Expression in Erlotinib-Treated Advanced Non–Small-Cell Lung Cancer Patients with EGFR Mutations. Clinical Cancer Research, 2011, 17, 1160-1168.	7.0	292
97	A HIF-Regulated VHL-PTP1B-Src Signaling Axis Identifies a Therapeutic Target in Renal Cell Carcinoma. Science Translational Medicine, 2011, 3, 85ra47.	12.4	54
98	Fitness Conferred by BCR-ABL Kinase Domain Mutations Determines the Risk of Pre-Existing Resistance in Chronic Myeloid Leukemia. PLoS ONE, 2011, 6, e27682.	2.5	55
99	MYC Cooperates with AKT in Prostate Tumorigenesis and Alters Sensitivity to mTOR Inhibitors. PLoS ONE, 2011, 6, e17449.	2.5	77
100	THE ANDROGEN RECEPTOR. , 2011, , 159-192.		0
101	Structureâ^'Activity Relationship for Thiohydantoin Androgen Receptor Antagonists for Castration-Resistant Prostate Cancer (CRPC). Journal of Medicinal Chemistry, 2010, 53, 2779-2796.	6.4	230
102	Coordinate Transcriptional Regulation by ERG and Androgen Receptor in Fusion-Positive Prostate Cancers. Cancer Cell, 2010, 17, 415-416.	16.8	16
103	Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell, 2010, 18, 11-22.	16.8	3,151
104	Clonal hematopoiesis in Philadelphia chromosome-negative bone marrow cells of chronic myeloid leukemia patients receiving dasatinib. Leukemia Research, 2010, 34, 708-713.	0.8	6
105	Hepsin cooperates with MYC in the progression of adenocarcinoma in a prostate cancer mouse model. Prostate, 2010, 70, 591-600.	2.3	32
106	ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature, 2010, 467, 849-853.	27.8	279
107	How melanomas bypass new therapy. Nature, 2010, 468, 902-903.	27.8	52
108	Even Better Kinase Inhibitors for Chronic Myeloid Leukemia. New England Journal of Medicine, 2010, 362, 2314-2315.	27.0	31

#	Article	IF	CITATIONS
109	Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16759-16765.	7.1	567
110	Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet, The, 2010, 375, 1437-1446.	13.7	972
111	Histone Deacetylases Are Required for Androgen Receptor Function in Hormone-Sensitive and Castrate-Resistant Prostate Cancer. Cancer Research, 2009, 69, 958-966.	0.9	167
112	Proteasomal and Genetic Inactivation of the NF1 Tumor Suppressor in Gliomagenesis. Cancer Cell, 2009, 16, 44-54.	16.8	132
113	Comprehensive mutational analysis and mRNA isoform quantification of <i>TP63</i> in normal and neoplastic human prostate cells. Prostate, 2009, 69, 559-569.	2.3	19
114	Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nature Genetics, 2009, 41, 524-526.	21.4	428
115	Shifting paradigms: the seeds of oncogene addiction. Nature Medicine, 2009, 15, 1158-1161.	30.7	84
116	Finding and Drugging the Vulnerabilities of RAS-Dependent Cancers. Cell, 2009, 137, 796-798.	28.9	16
117	Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer. Science, 2009, 324, 787-790.	12.6	1,955
118	Lessons learned from the development of kinase inhibitors. Clinical Advances in Hematology and Oncology, 2009, 7, 588-9.	0.3	3
119	The cancer biomarker problem. Nature, 2008, 452, 548-552.	27.8	848
120	A Prostatic Intraepithelial Neoplasia-Dependent p27Kip1 Checkpoint Induces Senescence and Inhibits Cell Proliferation and Cancer Progression. Cancer Cell, 2008, 14, 146-155.	16.8	153
121	Transient Potent BCR-ABL Inhibition Is Sufficient to Commit Chronic Myeloid Leukemia Cells Irreversibly to Apoptosis. Cancer Cell, 2008, 14, 485-493.	16.8	226
122	Targeting the androgen receptor pathway in prostate cancer. Current Opinion in Pharmacology, 2008, 8, 440-448.	3.5	371
123	lκB kinase β inhibition induces cell death in Imatinib-resistant and T315I Dasatinib-resistant BCR-ABL+ cells. Molecular Cancer Therapeutics, 2008, 7, 391-397.	4.1	26
124	The Nuclear Factor-κB Pathway Controls the Progression of Prostate Cancer to Androgen-Independent Growth. Cancer Research, 2008, 68, 6762-6769.	0.9	178
125	Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-α treatment. Blood, 2008, 111, 1039-1043.	1.4	195
126	Translational research: are we on the right track?. Journal of Clinical Investigation, 2008, 118, 3798-3801.	8.2	13

#	Article	IF	CITATIONS
127	Antitumor Activity of Rapamycin in a Phase I Trial for Patients with Recurrent PTEN-Deficient Glioblastoma. PLoS Medicine, 2008, 5, e8.	8.4	499
128	Something lost — something gained: the ASCI begins its second century. Journal of Clinical Investigation, 2008, 118, 1213-1214.	8.2	0
129	Clonal Hematopoiesis in Philadelphia Chromosome-Negative Bone Marrow Cells of Chronic Myeloid Leukemia Patients Receiving Tyrosine Kinase Inhibitors. Blood, 2008, 112, 575-575.	1.4	1
130	Murine Cell Lines Derived from <i>Pten</i> Null Prostate Cancer Show the Critical Role of PTEN in Hormone Refractory Prostate Cancer Development. Cancer Research, 2007, 67, 6083-6091.	0.9	158
131	Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. Journal of Clinical Investigation, 2007, 117, 2562-2569.	8.2	357
132	Mixing cocktails. Nature, 2007, 449, 993-995.	27.8	59
133	Where lies the blame for resistance—tumor or host?. Nature Medicine, 2007, 13, 1144-1145.	30.7	11
134	Identification of the JNK Signaling Pathway as a Functional Target of the Tumor Suppressor PTEN. Cancer Cell, 2007, 11, 555-569.	16.8	214
135	Long-Term Efficacy of Dasatinib in Chronic-Phase CML: Results from the Phase I Trial (CA180002) Blood, 2007, 110, 1026-1026.	1.4	4
136	PHA-739358, an Aurora Kinase Inhibitor, Induces Clinical Responses in Chronic Myeloid Leukemia Harboring T315I Mutations of BCR-ABL Blood, 2007, 110, 1030-1030.	1.4	39
137	Dasatinib in Imatinib-Resistant Philadelphia Chromosome–Positive Leukemias. New England Journal of Medicine, 2006, 354, 2531-2541.	27.0	1,606
138	Adaphostin-induced oxidative stress overcomes BCR/ABL mutation-dependent and -independent imatinib resistance. Blood, 2006, 107, 2501-2506.	1.4	76
139	Treating Imatinib-Resistant Leukemia: The Next Generation Targeted Therapies. Scientific World Journal, The, 2006, 6, 918-930.	2.1	22
140	Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Medicine, 2006, 12, 122-127.	30.7	579
141	Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain. PLoS Medicine, 2006, 3, e485.	8.4	298
142	Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19466-19471.	7.1	136
143	Mammalian Target of Rapamycin Inhibition Promotes Response to Epidermal Growth Factor Receptor Kinase Inhibitors in PTEN-Deficient and PTEN-Intact Glioblastoma Cells. Cancer Research, 2006, 66, 7864-7869.	0.9	231
144	Transgenic Mouse Model for Rapid Pharmacodynamic Evaluation of Antiandrogens. Cancer Research, 2006, 66, 10513-10516.	0.9	25

#	Article	IF	CITATIONS
145	Structure of the Kinase Domain of an Imatinib-Resistant Abl Mutant in Complex with the Aurora Kinase Inhibitor VX-680. Cancer Research, 2006, 66, 1007-1014.	0.9	282
146	Gene expression changes associated with progression and response in chronic myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2794-2799.	7.1	525
147	Will Kinase Inhibitors Have a Dark Side?. New England Journal of Medicine, 2006, 355, 313-315.	27.0	35
148	Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3100-3105.	7.1	73
149	Potent Transient Inhibition of BCR-ABL by Dasatinib Leads to Complete Cytogenetic Remissions in Patients with Chronic Myeloid Leukemia: Implications for Patient Management and Drug Development Blood, 2006, 108, 2166-2166.	1.4	7
150	The Most Common Dasatinib-Resistant BCR-ABL Kinase Domain Mutations in Patients with Chronic Myeloid Leukemia Are Sensitive to VX-680: Rationale for Early Combination Kinase Inhibitor Therapy Blood, 2006, 108, 2175-2175.	1.4	3
151	Six Year Follow-Up Results of a Phase II Study of Imatinib in Late Chronic Phase (L-CP) Chronic Myeloid Leukemia (CML) Post Interferon-A (IFN) Refractoriness/Intolerance Blood, 2006, 108, 428-428.	1.4	2
152	Sequential Kinase Inhibitor Therapy in CML Patients Can Select for Cells Harboring Compound BCR-ABL Kinase Domain Mutations with Increased Oncogenic Potency: Rationale for Early Combination Therapy of ABL Kinase Inhibitors Blood, 2006, 108, 751-751.	1.4	7
153	Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood, 2005, 105, 2093-2098.	1.4	197
154	Cross-species comparisons of cancer signaling. Nature Genetics, 2005, 37, 7-8.	21.4	23
155	Calculated resistance in cancer. Nature Medicine, 2005, 11, 824-825.	30.7	24
156	Transcriptional regulation of a metastasis suppressor gene by Tip60 and β-catenin complexes. Nature, 2005, 434, 921-926.	27.8	283
157	Dynamics of chronic myeloid leukaemia. Nature, 2005, 435, 1267-1270.	27.8	795
158	Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell, 2005, 8, 485.	16.8	0
159	Amplification and overexpression of prosaposin in prostate cancer. Genes Chromosomes and Cancer, 2005, 44, 351-364.	2.8	46
160	Context-Dependent Hormone-Refractory Progression Revealed through Characterization of a Novel Murine Prostate Cancer Cell Line. Cancer Research, 2005, 65, 11565-11571.	0.9	138
161	Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3395-3400.	7.1	303
162	Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11011-11016.	7.1	529

#	Article	IF	CITATIONS
163	Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors. New England Journal of Medicine, 2005, 353, 2012-2024.	27.0	1,376
164	Five Year Follow-Up Results of a Phase II Trial in Patients with Late Chronic Phase (L-CP) Chronic Myeloid Leukemia (CML) Treated with Imatinib Who Are Refractory/Intolerant of Interferon-α Blood, 2005, 106, 1089-1089.	1.4	11
165	Molecular Analysis of Dasatinib Resistance Mechanisms in CML Patients Identifies Novel BCR-ABL Mutations Predicted To Retain Sensitivity to Imatinib: Rationale for Combination Tyrosine Kinase Inhibitor Therapy Blood, 2005, 106, 1093-1093.	1.4	10
166	Dasatinib (BMS-354825) in Patients with Chronic Myeloid Leukemia (CML) and Philadelphia-Chromosome Positive Acute Lymphoblastic Leukemia (Ph+ ALL) Who Are Resistant or Intolerant to Imatinib: Update of a Phase I Study Blood, 2005, 106, 38-38.	1.4	17
167	Major Molecular Responses to Dasatinib (BMS-354825) Are Observed in Imatinib-Resistant Late Stage Chronic and Advanced CML Patients: Impact and Fate of Imatinib-Resistant Clones in Dasatinib-Treated Patients Blood, 2005, 106, 437-437.	1.4	3
168	Good Prognosis of CML Patients with Clonal Cytogenetic Abnormalities in Ph-Negative Cells Blood, 2005, 106, 1082-1082.	1.4	1
169	Altered Oncogenic Fitness of Imatinib- and Dasatinib-Resistant BCR-ABL Mutants Is Due to Differential Intrinsic Kinase Activity and Signaling Pathway Selection Defined by Phosphoproteome Profiling Blood, 2005, 106, 692-692.	1.4	0
170	Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3'-deoxy-3'-18F-fluorothymidine PET. Journal of Nuclear Medicine, 2005, 46, 114-20.	5.0	75
171	Update on the use of imatinib mesylate. Clinical Advances in Hematology and Oncology, 2005, 3, 757-8.	0.3	2
172	Overriding Imatinib Resistance with a Novel ABL Kinase Inhibitor. Science, 2004, 305, 399-401.	12.6	1,684
173	Antibody-Based Profiling of the Phosphoinositide 3-Kinase Pathway in Clinical Prostate Cancer. Clinical Cancer Research, 2004, 10, 8351-8356.	7.0	60
174	TORward AKTually useful mouse models. Nature Medicine, 2004, 10, 579-580.	30.7	15
175	Molecular determinants of resistance to antiandrogen therapy. Nature Medicine, 2004, 10, 33-39.	30.7	2,117
176	Targeted cancer therapy. Nature, 2004, 432, 294-297.	27.8	988
177	HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell, 2004, 6, 517-527.	16.8	316
178	AKT Activity Determines Sensitivity to Mammalian Target of Rapamycin (mTOR) Inhibitors by Regulating Cyclin D1 and c-myc Expression. Journal of Biological Chemistry, 2004, 279, 2737-2746.	3.4	302
179	Pharmacokinetics and Pharmacodynamics of Imatinib in a Phase I Trial With Chronic Myeloid Leukemia Patients. Journal of Clinical Oncology, 2004, 22, 935-942.	1.6	426
180	Granulocyte–Macrophage Progenitors as Candidate Leukemic Stem Cells in Blast-Crisis CML. New England Journal of Medicine, 2004, 351, 657-667.	27.0	1,387

#	Article	IF	CITATIONS
181	Hematologic and Cytogenetic Responses in Imatinib-Resistant Chronic Phase Chronic Myeloid Leukemia Patients Treated with the Dual SRC/ABL Kinase Inhibitor BMS-354825: Results from a Phase I Dose Escalation Study Blood, 2004, 104, 1-1.	1.4	45
182	Major Cytogenetic Responses to BMS-354825 in Patients with Chronic Myeloid Leukemia Are Associated with a One to Two Log Reduction in BCR-ABL Transcript Blood, 2004, 104, 1008-1008.	1.4	4
183	Hematologic and Cytogenetic Responses in Imatinib-Resistant Accelerated and Blast Phase Chronic Myeloid Leukemia (CML) Patients Treated with the Dual SRC/ABL Kinase Inhibitor BMS-354825: Results from a Phase I Dose Escalation Study Blood, 2004, 104, 20-20.	1.4	19
184	Effects of Adaphostin, a Novel Tyrphostin Inhibitor, in Diverse Models of Imatinib Mesylate Resistance Blood, 2004, 104, 2097-2097.	1.4	2
185	Four Years of Follow-Up of 1027 Patients with Late Chronic Phase (L-CP), Accelerated Phase (AP), or Blast Crisis (BC) Chronic Myeloid Leukemia (CML) Treated with Imatinib in Three Large Phase II Trials Blood, 2004, 104, 23-23.	1.4	61
186	Comparative Analysis of Two BCR-ABL Small Molecule Inhibitors Reveals Overlapping but Distinct Mechanisms of Resistance Blood, 2004, 104, 552-552.	1.4	1
187	BMS-354825 Is a SRC/ABL Inhibitor with High Nanomolar Activity Against the Kit D816v Mutation, Which Drives Systemic Mastocytosis and Is Imatinib-Resistant Blood, 2004, 104, 797-797.	1.4	11
188	Imatinib-Resistant BCR-ABL Mutations Alter Oncogenic Potency, Kinase Activity and Substrate Selection Blood, 2004, 104, 556-556.	1.4	0
189	Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell, 2003, 4, 223-238.	16.8	709
190	Will mTOR inhibitors make it as cancer drugs?. Cancer Cell, 2003, 4, 343-348.	16.8	184
190 191	Will mTOR inhibitors make it as cancer drugs?. Cancer Cell, 2003, 4, 343-348. MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate, 2003, 55, 39-47.	16.8 2.3	184 31
191	MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate, 2003, 55, 39-47. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene, 2003,	2.3	31
191 192	MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate, 2003, 55, 39-47. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene, 2003, 22, 7389-7395. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in	2.3 5.9	31 207
191 192 193	MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate, 2003, 55, 39-47. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene, 2003, 22, 7389-7395. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood, 2003, 101, 4701-4707. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes and	2.3 5.9 1.4	31 207 501
191 192 193 194	MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate, 2003, 55, 39-47. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene, 2003, 22, 7389-7395. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood, 2003, 101, 4701-4707. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes and Development, 2003, 17, 2998-3010. A novel pyridopyrimidine inhibitor of abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells	2.3 5.9 1.4 5.9	31 207 501 149
191 192 193 194 195	 MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate, 2003, 55, 39-47. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene, 2003, 22, 7389-7395. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood, 2003, 101, 4701-4707. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes and Development, 2003, 17, 2998-3010. A novel pyridopyrimidine inhibitor of abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells and is effective against STI571-resistant Bcr-abl mutants. Clinical Cancer Research, 2003, 9, 1267-73. Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. 	2.3 5.9 1.4 5.9 7.0	 31 207 501 149 87

#	Article	IF	CITATIONS
199	BCR-ABL point mutants isolated from patients with imatinib mesylate–resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood, 2002, 100, 3041-3044.	1.4	289
200	The emergence of resistance to targeted cancer therapeutics. Pharmacogenomics, 2002, 3, 603-623.	1.3	26
201	Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Current Opinion in Hematology, 2002, 9, 303-307.	2.5	97
202	Hematopathologic and cytogenetic findings in imatinib mesylate–treated chronic myelogenous leukemia patients: 14 months' experience. Blood, 2002, 100, 435-441.	1.4	115
203	Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood, 2002, 99, 1928-1937.	1.4	943
204	Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 2002, 99, 3530-3539.	1.4	1,096
205	A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood, 2002, 100, 1965-1971.	1.4	534
206	Hematologic and Cytogenetic Responses to Imatinib Mesylate in Chronic Myelogenous Leukemia. New England Journal of Medicine, 2002, 346, 645-652.	27.0	1,899
207	Disabling Abl—Perspectives on Abl kinase regulation and cancer therapeutics. Cancer Cell, 2002, 1, 13-15.	16.8	44
208	Rational therapeutic intervention in cancer: kinases as drug targets. Current Opinion in Genetics and Development, 2002, 12, 111-115.	3.3	122
209	Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood, 2002, 99, 3792-3800.	1.4	240
210	Finding the next Gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell, 2002, 1, 413-415.	16.8	122
211	Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell, 2002, 2, 117-125.	16.8	1,548
212	Chromosomal aberrations in prostate cancer xenografts detected by comparative genomic hybridization. Genes Chromosomes and Cancer, 2002, 35, 66-73.	2.8	39
213	TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells. Oncogene, 2002, 21, 4739-4746.	5.9	67
214	Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene, 2002, 21, 5088-5096.	5.9	188
215	Survival signaling mediated by c-Jun NH2-terminal kinase in transformed B lymphoblasts. Nature Genetics, 2002, 32, 201-205.	21.4	158
216	The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nature Reviews Cancer, 2002, 2, 489-501.	28.4	5,480

#	Article	IF	CITATIONS
217	Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts. Cancer Research, 2002, 62, 5254-9.	0.9	66
218	Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia. New England Journal of Medicine, 2001, 344, 1031-1037.	27.0	4,825
219	Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification. Science, 2001, 293, 876-880.	12.6	2,936
220	Activity of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in the Blast Crisis of Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia with the Philadelphia Chromosome. New England Journal of Medicine, 2001, 344, 1038-1042.	27.0	2,593
221	Defining a common region of deletion at 13q21 in human cancers. Genes Chromosomes and Cancer, 2001, 31, 333-344.	2.8	33
222	Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene, 2001, 20, 3301-3305.	5.9	108
223	Bcr-abl kinase inhibition as the basis of therapy for cml. Experimental Hematology, 2000, 28, 130.	0.4	0
224	The Survival Function of the Bcr-Abl Oncogene Is Mediated by Bad-Dependent and -Independent Pathways: Roles for Phosphatidylinositol 3-Kinase and Raf. Molecular and Cellular Biology, 2000, 20, 1179-1186.	2.3	167
225	Cooperative Assembly of Androgen Receptor into a Nucleoprotein Complex That Regulates the Prostate-specific Antigen Enhancer. Journal of Biological Chemistry, 1999, 274, 25756-25768.	3.4	126
226	A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Medicine, 1999, 5, 280-285.	30.7	886
227	Chronic Myeloid Leukemia. New England Journal of Medicine, 1999, 340, 1330-1340.	27.0	1,400
228	Transplantation of Autologous Peripheral Blood Progenitor Cells Procured after High-Dose Cytarabine-Based Consolidation Chemotherapy for Adults with Secondary Acute Myelogenous Leukemia in first Remission. Leukemia and Lymphoma, 1999, 33, 475-484.	1.3	6
229	Mitogen-Activated Protein Kinase Kinase Kinase 1 Activates Androgen Receptor-Dependent Transcription and Apoptosis in Prostate Cancer. Molecular and Cellular Biology, 1999, 19, 5143-5154.	2.3	195
230	Mechanistic concepts in androgen-dependence of prostate cancer. , 1998, 17, 421-427.		45
231	Functional role for the c-Abl tyrosine kinase in meiosis I. Oncogene, 1998, 16, 1773-1777.	5.9	45
232	Molecular abnormalities in myeloid leukemias and myelodysplastic syndromes. Leukemia Research, 1998, 22, 1113-1122.	0.8	14
233	Structural Requirements for Function of the Crkl Adapter Protein in Fibroblasts and Hematopoietic Cells. Molecular and Cellular Biology, 1998, 18, 5082-5090.	2.3	70
234	A Cytoplasmic Inhibitor of the JNK Signal Transduction Pathway. Science, 1997, 277, 693-696.	12.6	654

#	Article	IF	CITATIONS
235	Molecular genetics of acute leukaemia. Lancet, The, 1997, 349, 196-200.	13.7	45
236	Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Medicine, 1997, 3, 402-408.	30.7	356
237	3 Signal transduction pathways involved in BCR-ABL transformation. Best Practice and Research: Clinical Haematology, 1997, 10, 223-231.	1.1	65
238	Genotoxic Drugs Induce Interaction of the c-Abl Tyrosine Kinase and the Tumor Suppressor Protein p53. Journal of Biological Chemistry, 1996, 271, 26457-26460.	3.4	64
239	The CRKL Adaptor Protein Transforms Fibroblasts and Functions in Transformation by the BCR-ABL Oncogene. Journal of Biological Chemistry, 1996, 271, 23255-23261.	3.4	123
240	Signal transduction-based strategies for the treatment of chronic myelogenous leukemia. Trends in Molecular Medicine, 1996, 2, 503-509.	2.6	11
241	Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature, 1996, 382, 272-274.	27.8	232
242	In vitro modulation of the invasive and metastatic potentials of human renal cell carcinoma by interleukin-2 and/or interferon-alpha gene transfer. Cancer, 1994, 74, 1904-1911.	4.1	31
243	Molecular requirements for rapid plasmacytoma and Pre-B lymphoma induction by abelson murine leukemia virus inmyc-transgenic mice. International Journal of Cancer, 1994, 58, 135-141.	5.1	1
244	The nuclear tyrosine kinase c-abl negatively regulates cell growth. Cell, 1994, 77, 121-131.	28.9	266
245	Chronic myelomonocytic leukemia: Tel-a-kinase what Ets all about. Cell, 1994, 77, 171-173.	28.9	97
246	The Role of MYC in Transformation by BCR-ABL. Leukemia and Lymphoma, 1993, 11, 45-46.	1.3	35
247	Dominant negative MYC blocks transformation by ABL oncogenes. Cell, 1992, 70, 901-910.	28.9	393
248	Production of granulocyte-macrophage colony-stimulating factor in two patients with lung cancer, leukocytosis, and eosinophilia. Cancer, 1992, 69, 1342-1346.	4.1	70
249	Leukemia and the disruption of normal hematopoiesis. Cell, 1991, 64, 337-350.	28.9	353