
Rubens Caram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/955349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ductility improvement due to martensite α′ decomposition in porous Ti–6Al–4V parts produced by selective laser melting for orthopedic implants. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 149-158.	1.5	187
2	Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications. Electrochimica Acta, 2008, 53, 2809-2817.	2.6	171
3	Development of Ti–Mo alloys for biomedical applications: Microstructure and electrochemical characterization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 727-731.	2.6	154
4	Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses. Electrochimica Acta, 2008, 53, 4867-4874.	2.6	145
5	Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochimica Acta, 2010, 55, 759-770.	2.6	125
6	Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Materials Science and Engineering C, 2007, 27, 908-913.	3.8	118
7	Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering C, 2011, 31, 833-839.	3.8	112
8	Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys. Materials Characterization, 2014, 96, 273-281.	1.9	100
9	Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Materials Characterization, 2011, 62, 673-680.	1.9	87
10	Aging response of the Ti–35Nb–7Zr–5Ta and Ti–35Nb–7Ta alloys. Journal of Alloys and Compounds, 2007, 433, 207-210.	2.8	85
11	Ti–Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 31-38.	1.5	78
12	Effects of composition and heat treatment on the mechanical behavior of Ti–Cu alloys. Materials & Design, 2014, 55, 1006-1013.	5.1	77
13	High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti–35Nb–7Zr–5Ta alloy for implant applications. Acta Biomaterialia, 2010, 6, 1625-1629.	4.1	74
14	Effect of cooling rate on Ti–Cu eutectoid alloy microstructure. Materials Science and Engineering C, 2009, 29, 1023-1028.	3.8	71
15	Cytotoxicity study of some Ti alloys used as biomaterial. Materials Science and Engineering C, 2009, 29, 1365-1369.	3.8	62
16	Laser additive processing of a functionally graded internal fracture fixation plate. Materials and Design, 2017, 130, 8-15.	3.3	61
17	Correlations between aging heat treatment, ï‰ phase precipitation and mechanical properties of a cast Ti–Nb alloy. Materials & Design, 2011, 32, 2387-2390.	5.1	57
18	The role of Cu-based intermetallics on the pitting corrosion behavior of Sn–Cu, Ti–Cu and Al–Cu alloys. Electrochimica Acta, 2012, 77, 189-197.	2.6	57

#	Article	lF	CITATIONS
19	Hexagonal martensite decomposition and phase precipitation in Ti–Cu alloys. Materials & Design, 2011, 32, 4608-4613.	5.1	55
20	Recrystallization and grain growth in highly cold worked CP-Titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3994-4000.	2.6	52
21	Morphological evolution of transformation products and eutectoid transformation(s) in a hyper-eutectoid Ti-12â€at% Cu alloy. Acta Materialia, 2019, 168, 63-75.	3.8	50
22	Solute segregation and microstructure of directionally solidified austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 435-436, 139-144.	2.6	47
23	Mechanical, physical, and chemical characterization of Ti–35Nb–5Zr and Ti–35Nb–10Zr casting alloys. Journal of Materials Science: Materials in Medicine, 2009, 20, 1629-1636.	1.7	43
24	PREPARATION AND CHARACTERIZATION OF Ti-Al-Nb ALLOYS FOR ORTHOPEDIC IMPLANTS. Brazilian Journal of Chemical Engineering, 1998, 15, 326-333.	0.7	40
25	Effect of the addition of Ta on microstructure and properties of Ti–Nb alloys. Journal of Alloys and Compounds, 2010, 504, 330-340.	2.8	39
26	α phase precipitation and mechanical properties of Nb-modified Ti-5553 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 112-121.	2.6	37
27	Influence of the growth rate on the microstructure of a Nb–Al–Ni ternary eutectic. Journal of Crystal Growth, 2002, 237-239, 90-94.	0.7	36
28	Directional solidification processing of eutectic alloys in the Ni–Al–V system. Journal of Crystal Growth, 2000, 211, 485-490.	0.7	33
29	Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification. Journal of Crystal Growth, 1999, 198-199, 844-849.	0.7	32
30	Crystallographic texture evolution in Ti–35Nb alloy deformed by cold rolling. Materials & Design, 2014, 60, 653-660.	5.1	32
31	ISE and fracture toughness evaluation by Vickers hardness testing of an Al3Nb–Nb2Al–AlNbNi in situ composite. Journal of Alloys and Compounds, 2009, 472, 65-70.	2.8	30
32	On the selection of Ti–Cu alloys for thixoforming processes: phase diagram and microstructural evaluation. Journal of Materials Science, 2015, 50, 8007-8017.	1.7	30
33	The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti–Mo alloys employed as biomaterials. Materials Characterization, 2015, 110, 5-13.	1.9	30
34	Microstructure, Mechanical Properties, and Electrochemical Behavior of Ti-Nb-Fe Alloys Applied as Biomaterials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3213-3226.	1.1	30
35	Influence of growth rate on the microstructure and mechanical behaviour of a NiAl–Mo eutectic alloy. Journal of Alloys and Compounds, 2004, 381, 91-98.	2.8	29
36	Microstructure and mechanical behavior of in situ Ni–Ni3Si composite. Journal of Alloys and Compounds, 2007, 432, 167-171.	2.8	29

#	Article	IF	CITATIONS
37	Influence of Si addition on the microstructure and mechanical properties of Ti–35Nb alloy for applications in orthopedic implants. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 74-87.	1.5	29
38	The effect of Zr and Sn additions on the microstructure of Ti-Nb-Fe gum metals with high elastic admissible strain. Materials and Design, 2018, 160, 1186-1195.	3.3	29
39	Effects of double-aging heat-treatments on the microstructure and mechanical behavior of an Nb-modified Ti-5553 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 716-725.	2.6	28
40	Effect of the growth parameters on the Ni–Ni3Si eutectic microstructure. Journal of Crystal Growth, 2002, 237-239, 95-100.	0.7	27
41	Growth and characterization of the NiAl–NiAlNb eutectic structure. Journal of Crystal Growth, 2005, 275, e147-e152.	0.7	27
42	Rapid quenching of semisolid Ti-Cu alloys: Insights into globular microstructure formation and coarsening. Acta Materialia, 2017, 139, 86-95.	3.8	27
43	Femoral hip stem prosthesis made of graded elastic modulus metastable β Ti Alloy. Materials & Design, 2015, 69, 30-36.	5.1	26
44	Melting behavior and globular microstructure formation in semi-solid CoCrCu FeNi high-entropy alloys. Journal of Materials Science and Technology, 2020, 52, 207-217.	5.6	26
45	Directional growth of Al-Nb-X eutectic alloys. Journal of Crystal Growth, 2000, 211, 466-470.	0.7	25
46	Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys. Applied Surface Science, 2013, 285, 226-234.	3.1	25
47	A novel proposal to manipulate the properties of titanium parts by laser surface alloying. Scripta Materialia, 2013, 68, 471-474.	2.6	25
48	Directional solidification of Pb—Sn eutectic with vibration. Journal of Crystal Growth, 1991, 114, 249-254.	0.7	24
49	Growth morphology of the NiAl–V in situ composites. Journal of Materials Processing Technology, 2003, 143-144, 629-635.	3.1	24
50	Fe–Al–Nb phase diagram investigation and directional growth of the (Fe, Al)2Nb–(Fe, Al, Nb)ss eutectic system. Journal of Alloys and Compounds, 2005, 399, 196-201.	2.8	24
51	Growth and three-dimensional analysis of a Nb–Al–Ni ternary eutectic. Materials Characterization, 2008, 59, 693-699.	1.9	24
52	Solute segregation and its influence on the microstructure and electrochemical behavior of Ti–Nb–Zr alloys. Journal of Alloys and Compounds, 2009, 478, 111-116.	2.8	24
53	Microstructure of directionally solidified Ti–Fe eutectic alloy with low interstitial and high mechanical strength. Journal of Crystal Growth, 2011, 333, 40-47.	0.7	24
54	CrCuFeMnNi high-entropy alloys for semisolid processing: The effect of copper on phase formation, melting behavior, and semisolid microstructure. Materials Characterization, 2021, 178, 111260.	1.9	24

#	Article	IF	CITATIONS
55	Effects of Omega Phase on Elastic Modulus of Ti-Nb Alloys as a Function of Composition and Cooling Rate. Solid State Phenomena, 0, 138, 393-398.	0.3	23
56	Anelastic spectroscopy in a Ti alloy used as biomaterial. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 521-522, 59-62.	2.6	23
57	Orthorhombic martensite formation upon aging in a Ti-30Nb-4Sn alloy. Materials Chemistry and Physics, 2016, 183, 238-246.	2.0	23
58	Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. Journal of Materials Research and Technology, 2022, 20, 811-820.	2.6	23
59	Solute lean Ti-Nb-Fe alloys: An exploratory study. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 761-769.	1.5	22
60	Growth and solid/solid transformation in a Ni–Si eutectic alloy. Journal of Alloys and Compounds, 2005, 399, 202-207.	2.8	21
61	In situ characterization of the effects of Nb and Sn on the anatase–rutile transition in TiO2 nanotubes using high-temperature X-ray diffraction. Applied Surface Science, 2014, 307, 372-381.	3.1	21
62	Primary dendrite spacing as a function of directional solidification parameters in an Alî—,Siî—,Cu alloy. Journal of Crystal Growth, 1997, 174, 65-69.	0.7	19
63	A novel ternary eutectic in the Nb–Al–Ni system. Scripta Materialia, 2003, 48, 1495-1500.	2.6	19
64	Effects of cooling rate on the microstructure and solute partitioning in near eutectoid Ti–Cu alloys. Philosophical Magazine, 2014, 94, 2350-2371.	0.7	19
65	Surface stiffness gradient in Ti parts obtained by laser surface alloying with Cu and Nb. Surface and Coatings Technology, 2016, 297, 34-42.	2.2	19
66	Directional growth and characterization of Fe–Al–Nb eutectic alloys. Journal of Crystal Growth, 1999, 198-199, 850-855.	0.7	18
67	Directional solidification, microstructure and properties of the – eutectic. Journal of Crystal Growth, 2005, 275, e153-e158.	0.7	18
68	Mechanical Properties and Fracture Behavior of Directionally Solidified NiAl-V Eutectic Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 557-565.	1.1	18
69	Influence of convection on rod spacing of eutectics. Journal of Crystal Growth, 1990, 106, 294-302.	0.7	17
70	Growth and microstructural characterization of SnSe-SnSe2 composite. Journal of Materials Science, 1999, 34, 4607-4612.	1.7	17
71	On the hardenability of Nb-modified metastable beta Ti-5553 alloy. Journal of Alloys and Compounds, 2016, 667, 211-218.	2.8	17
72	3D thixo-printing: A novel approach for additive manufacturing of biodegradable Mg-Zn alloys. Materials and Design, 2020, 196, 109161.	3.3	17

#	Article	IF	CITATIONS
73	Directional solidification of a Sn-Se eutectic alloy using the Bridgman-Stockbarger method. Journal of Crystal Growth, 1996, 166, 398-401.	0.7	16
74	Microstructure of the microalloyed NiAl–V eutectics. Materials Letters, 2002, 55, 126-131.	1.3	16
75	Fracture toughness of the eutectic alloy Al3Nb-Nb2Al. Materials Letters, 2003, 57, 3949-3953.	1.3	16
76	Growth and morphological characterization of Al–Cr–Nb eutectic alloys. Journal of Alloys and Compounds, 2005, 402, 156-161.	2.8	16
77	Alpha phase precipitation in Ti-30Nb-1Fe alloys – phase transformations in continuous heating and aging heat treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 222-229.	2.6	16
78	Application of a Genetic Algorithm to Optimize Purification in the Zone Refining Process. Materials and Manufacturing Processes, 2011, 26, 493-500.	2.7	15
79	In-situ microstructural observation of Ti-Cu alloys for semi-solid processing. Materials Characterization, 2018, 145, 10-19.	1.9	15
80	Microstructure and metastable phase formation in a rapidly solidified Ni–Si eutectic alloy using a melt-spinning technique. Journal of Alloys and Compounds, 2004, 381, 72-76.	2.8	14
81	Microstructure evolution of Ti–30Nb–(4Sn) alloys during classical and step-quench aging heat treatments. Materials Science and Technology, 2017, 33, 400-407.	0.8	14
82	Lamellar spacing selection in a directionally solidified Snî—,Se eutectic alloy. Journal of Crystal Growth, 1997, 174, 70-75.	0.7	12
83	Simulation of CP-Ti Recrystallization and Grain Growth by a Cellular Automata Algorithm: Simulated Versus Experimental Results. Materials Research, 2017, 20, 688-701.	0.6	12
84	Anodization growth of TiO2 nanotubes on Ti–35Nb–7Zr–5Ta alloy: effects of anodization time, strain hardening, and crystallographic texture. Journal of Materials Science, 2019, 54, 13724-13739.	1.7	12
85	Eutectic alloy microstructure: atomic force microscopy analysis. Applied Surface Science, 2005, 240, 414-423.	3.1	11
86	Growth and microstructure evolution of the Nb2Al–Al3Nb eutectic in situ composite. Materials Characterization, 2005, 54, 187-193.	1.9	11
87	Effects of Cooling Rate and Sn Addition on the Microstructure of Ti-Nb-Sn Alloys. Solid State Phenomena, 0, 172-174, 190-195.	0.3	11
88	<scp>R</scp> educing <scp><i>S</i></scp> <i>taphylococcus aureus</i> growth on <scp>T</scp> i alloy nanostructured surfaces through the addition of <scp>S</scp> n. Journal of Biomedical Materials Research - Part A, 2015, 103, 3757-3763.	2.1	11
89	Arc Synthesis, Crystal Structure, and Photoelectrochemistry of Copper(I) Tungstate. ACS Applied Materials & Interfaces, 2021, 13, 32865-32875.	4.0	11
90	Directional and rapid solidification of Al–Nb–Ni ternary eutectic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 565-570.	2.6	10

#	Article	IF	CITATIONS
91	Preparation and characterization of ordered intermetallic platinum phases for electrocatalytic applications. Intermetallics, 2008, 16, 246-254.	1.8	10
92	Effects of Aging Heat Treatment on the Microstructure of Ti-Nb and Ti-Nb-Sn Alloys Employed as Biomaterials. Advanced Materials Research, 0, 324, 61-64.	0.3	9
93	Influence of heating rate and aging temperature on omega and alpha phase precipitation in Ti 35Nb alloy. Materials Characterization, 2018, 145, 268-276.	1.9	9
94	Thixoforming of titanium: The microstructure and processability of semisolid Ti-Cu-Fe alloys. Vacuum, 2020, 180, 109567.	1.6	9
95	A novel Ag doping Ti alloys route: Formation and antibacterial effect of the TiO2 nanotubes. Materials Chemistry and Physics, 2021, 261, 124192.	2.0	9
96	Crystalline phase of TiO2 nanotube arrays on Ti–35Nb–4Zr alloy: Surface roughness, electrochemical behavior and cellular response. Ceramics International, 2022, 48, 5154-5161.	2.3	9
97	Effects of Composition on Solidification Microstructure of Cast Titanium Alloys. Materials Science Forum, 0, 649, 183-188.	0.3	8
98	Grain Boundary Sliding Phenomenon and Its Effect on High Temperature Ductility of Ni-Base Alloys. Materials Science Forum, 0, 638-642, 2858-2863.	0.3	8
99	Effects of the microstructural characteristics of a metastable \hat{I}^2 Ti alloy on its corrosion fatigue properties. International Journal of Fatigue, 2013, 54, 32-37.	2.8	8
100	Production and characterization of TiO2 nanotubes on Ti-Nb-Mo-Sn system for biomedical applications. Surface and Coatings Technology, 2017, 326, 126-133.	2.2	8
101	Self-organized TiO2 nanotube layer on Ti–Nb–Zr alloys: growth, characterization, and effect on corrosion behavior. Journal of Applied Electrochemistry, 2019, 49, 1079-1089.	1.5	8
102	Microstructure of undercooled SnSe–SnSe2 hypoeutectic alloy. Journal of Alloys and Compounds, 2004, 375, 142-146.	2.8	7
103	Characterization of the photoactivity of nanotube layers grown on Ti–35Nb and Ti–35Nb–4Sn alloys. Journal of Materials Science, 2016, 51, 9384-9393.	1.7	7
104	High strength biomedical Ti–13Mo–6Sn alloy: Processing routes, microstructural evolution and mechanical behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138190.	2.6	7
105	In Situ Scanning Electron Microscopy High Temperature Deformation Experiments to Study Ductility Dip Cracking of Ni–Cr–Fe Alloys. , 2010, , 27-39.		7
106	Effect of Heat Treatments on Mechanical Properties and Fatigue Resistance of Ti-35Nb Alloy Used as Biomaterial. Materials Science Forum, 0, 636-637, 68-75.	0.3	6
107	Texture Development in Cold Deformed and Recrystallized Ti–30Nb–4Sn Alloy and Its Effects on Hardness and Young's Modulus. Advanced Engineering Materials, 2017, 19, 1600058.	1.6	6
108	Observations on the compression properties of semisolid Ti–Cu alloys. Journal of Materials Research and Technology, 2020, 9, 15802-15810.	2.6	6

#	Article	IF	CITATIONS
109	Evaluation of the solid/liquid interface undercooling during Sn-Se Eutectic growth. Materials Research, 1998, 1, 05-10.	0.6	5
110	Electrochromic Properties of Sol-gel Coating of Nb2O5 and Nb2O5:Li+. Materials Research, 2002, 5, 43-46.	0.6	5
111	Fracture toughness of a directionally solidified Al–Nb–Ni ternary eutectic. Materials & Design, 2012, 33, 563-568.	5.1	5
112	Effect of partial replacement of V with Nb on phase transformations and mechanical properties of Ti-5553 alloy. Materials Letters, 2018, 220, 205-208.	1.3	5
113	Crystallographic features of the Al3Nb, Nb2Al and Nb(Ni1â^'XAlX)2 phases in a directionally solidified ternary eutectic microstructure. Materials Characterization, 2019, 147, 303-310.	1.9	5
114	Exploring the Ti-5553 phase transformations utilizing in-situ high-temperature laser-scanning confocal microscopy. Materials Characterization, 2020, 159, 110013.	1.9	5
115	Eutectic Mircostructure Evolution in a Directionally Solidified Nb-Al Alloy. Materials Science Forum, 2000, 329-330, 179-184.	0.3	4
116	Liquidus projection of the Nb–Cr–Al system near the Al3(Nb,Cr)+Cr(Al,Nb) eutectic region. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 424, 77-82.	2.6	4
117	Evaluation of lamellar spacing selection in eutectic alloys using phase field model. Computational Materials Science, 2008, 44, 695-701.	1.4	4
118	Application of coupled substrate aging and TiO2 nanotube crystallization heat treatments in cold-rolled Ti–Nb–Sn alloys. Journal of Materials Science, 2016, 51, 6389-6399.	1.7	4
119	Microstructural and Mechanical Characterization of Directionally Solidified Conventional and Nb-Modified Mar-M247 Superalloy. Journal of Materials Engineering and Performance, 2019, 28, 2427-2438.	1.2	4
120	Stiffness and hardness gradients obtained by laser surface melting of an aged Î ² -Ti alloy. Materials Letters, 2020, 260, 126901.	1.3	4
121	Experimental and computational investigation of Ti-Nb-Fe-Zr alloys with limited Fe contents for biomedical applications. Journal of Materials Science, 2021, 56, 11494-11510.	1.7	4
122	Influence of Solidification Thermal Parameters on the Microstructure of an Aluminum Alloy. Journal of Materials Science Letters, 1998, 17, 1559-1562.	0.5	3
123	Hardening Mechanism through Phase Separation of Beta Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta Alloys. Materials Research Society Symposia Proceedings, 2012, 1487, 19.	0.1	3
124	Formation of alpha phase via pseudospinodal decomposition in Ti-Nb-Fe based alloys. Materials Letters, 2017, 189, 201-205.	1.3	3
125	Achieving high strength and low Young's modulus in martensitic Ti-Nb-O alloys. Materials Letters, 2021, 301, 130308.	1.3	3
126	Self-organized TiO2 nanotubes on Ti-Nb-Fe alloys for biomedical applications: Synthesis and characterization. Electrochemistry Communications, 2022, 138, 107280.	2.3	3

#	Article	IF	CITATIONS
127	Anelastic relaxation due to hydrogen in Ti–35Nb–7Zr–5Ta alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3326-3329.	2.6	2
128	Laser surface alloying applied on Ti-3Mo and Ti-10Nb sintered parts. Surface and Coatings Technology, 2021, 407, 126773.	2.2	2
129	The magnetic properties of Fe-Al-Nb intermetallic compounds. , 0, , .		1
130	On the properties of the eutectic alloy Al3(Nb,Cr)+Cr(Al,Nb). Journal of Alloys and Compounds, 2008, 464, 162-167.	2.8	1
131	Investigation on the Production of Thixotropic Semisolid Ti Alloys. Materials Science Forum, 2010, 649, 119-124.	0.3	1
132	Phase separation in Beta Ti alloys through HRTEM characterization Microscopy and Microanalysis, 2012, 18, 758-759.	0.2	1
133	Isothermal omega Assisted Alpha Phase Precipitation and Microstructural Evolution of an Aged Ti-30Nb-3Fe Alloy. Materials Research, 2020, 23, .	0.6	1
134	Solidification Microstructure Investigation of a Ni-Ni ₃ Si Eutectic Alloy. Materials Science Forum, 2000, 329-330, 167-172.	0.3	0
135	Oxidation behavior and thermal stability of a Ni <scp>A</scp> l– <scp>V</scp> eutectic alloy. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1019-1024.	0.8	0
136	Editorial: Titanium Alloys: Properties, Processing and Applications. Advanced Engineering Materials, 2017, 19, 1700168.	1.6	0
137	Effects of Electrodiffusion on the Pb-Sn Eutectic Growth. Brazilian Journal of Chemical Engineering, 1998, 15, 91-97.	0.7	0
138	Transformações de fase e medidas de resistividade elétrica em ligas de titânio. , 0, , .		0
139	Phase transformations during continuous heating: effect of Sn addition on the microstructure of Ti-13Mo alloy. MATEC Web of Conferences, 2020, 321, 05017.	0.1	0