Jean-Francois Boily

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9553175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silicate surface coverage controls quinolone transport in saturated porous media. Journal of Colloid and Interface Science, 2022, 607, 347-356.	9.4	11
2	Oxygen Interactions with Covalently Grafted 2D Nanometric Carboxyphenyl Thin Films—An Experimental and DFT Study. Coatings, 2022, 12, 49.	2.6	7
3	Sodium hypochlorite as an oxidizing agent for removal of soil organic matter before microplastics analyses. Journal of Environmental Quality, 2022, 51, 112-122.	2.0	5
4	Interactions of Anti-Inflammatory and Antibiotic Drugs at Mineral Surfaces Can Control Environmental Fate and Transport. Environmental Science & Technology, 2022, 56, 2378-2385.	10.0	8
5	Water film-driven Mn (oxy)(hydr)oxide nanocoating growth on rhodochrosite. Geochimica Et Cosmochimica Acta, 2022, 329, 87-105.	3.9	4
6	Nanoscale Hydration in Layered Manganese Oxides. Langmuir, 2021, 37, 666-674.	3.5	16
7	A gateway for ion transport on gas bubbles pinned onto solids. Communications Chemistry, 2021, 4, .	4.5	4
8	Effects of Inorganic Acids and Organic Solutes on the Ice Nucleating Ability and Surface Properties of Potassium-Rich Feldspar. ACS Earth and Space Chemistry, 2021, 5, 1212-1222.	2.7	16
9	Acid-Induced Phosphorus Release from Hydrothermally Carbonized Sewage Sludge. Waste and Biomass Valorization, 2021, 12, 6555-6568.	3.4	28
10	Competitive Carboxylate–Silicate Binding at Iron Oxyhydroxide Surfaces. Langmuir, 2021, 37, 13107-13115.	3.5	5
11	Carbon dioxide binding in supercooled water nanofilms on nanominerals. Environmental Science: Nano, 2020, 7, 437-442.	4.3	1
12	Direct observation of anisotropic growth of water films on minerals driven by defects and surface tension. Science Advances, 2020, 6, eaaz9708.	10.3	27
13	Effects of organic matter–goethite interactions on reactive transport of nalidixic acid: Column study and modeling. Environmental Research, 2020, 191, 110187.	7.5	11
14	The impact of hydrothermal carbonization on the surface functionalities of wet waste materials for water treatment applications. Environmental Science and Pollution Research, 2020, 27, 24369-24379.	5.3	39
15	Influence of water matrix and hydrochar properties on removal of organic and inorganic contaminants. Environmental Science and Pollution Research, 2020, 27, 30333-30341.	5.3	10
16	Direct identification of reaction sites on ferrihydrite. Communications Chemistry, 2020, 3, .	4.5	26
17	Surface Composition Dependence on the Ice Nucleating Ability of Potassium-Rich Feldspar. ACS Earth and Space Chemistry, 2020, 4, 873-881.	2.7	16
18	Water Flow Variability Affects Adsorption and Oxidation of Ciprofloxacin onto Hematite. Environmental Science & Technology, 2019, 53, 10102-10109.	10.0	21

#	Article	IF	CITATIONS
19	Deconvolution of Smectite Hydration Isotherms. ACS Earth and Space Chemistry, 2019, 3, 2490-2498.	2.7	13
20	Hydrogen bonding and molecular orientations across thin water films on sapphire. Journal of Colloid and Interface Science, 2019, 555, 810-817.	9.4	12
21	Residence times of nanoconfined CO2 in layered aluminosilicates. Environmental Science: Nano, 2019, 6, 146-151.	4.3	8
22	Phosphate Sorption Speciation and Precipitation Mechanisms on Amorphous Aluminum Hydroxide. Soil Systems, 2019, 3, 20.	2.6	36
23	Improved in vivo measurement of alternative oxidase respiration in fieldâ€collected pine roots. Physiologia Plantarum, 2019, 167, 34-47.	5.2	5
24	Water Vapor Binding on Organic Matter-Coated Minerals. Environmental Science & Technology, 2019, 53, 1252-1257.	10.0	15
25	Ice and Cryosalt Formation in Saline Microporous Clay Gels. ACS Earth and Space Chemistry, 2018, 2, 314-319.	2.7	5
26	Influence of Sb ⁵⁺ as a Double Donor on Hematite (Fe ³⁺) Photoanodes for Surface-Enhanced Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 16467-16473.	8.0	50
27	Binding Geometries of Silicate Species on Ferrihydrite Surfaces. ACS Earth and Space Chemistry, 2018, 2, 125-134.	2.7	27
28	Silicate Binding and Precipitation on Iron Oxyhydroxides. Environmental Science & Technology, 2018, 52, 1827-1833.	10.0	26
29	Cohesive Vibrational and Structural Depiction of Intercalated Water in Montmorillonite. ACS Earth and Space Chemistry, 2018, 2, 38-47.	2.7	26
30	X-ray Photoelectron Spectroscopy of Fast-Frozen Hematite Colloids in Aqueous Solutions. 6. Sodium Halide (F–, Cl–, Br–, I–) Ion Binding on Microparticles. Langmuir, 2018, 34, 13497-13504.	3.5	1
31	Cobinding of Pharmaceutical Compounds at Mineral Surfaces: Mechanistic Modeling of Binding and Cobinding of Nalidixic Acid and Niflumic Acid at Goethite Surfaces. Environmental Science & Technology, 2017, 51, 11617-11624.	10.0	24
32	Electrochemical Response of Bound Electrolyte Ions at Oriented Hematite Surfaces: A Local Electrochemical Impedance Spectroscopy Study. Journal of Physical Chemistry C, 2017, 121, 27976-27982.	3.1	10
33	Co-Binding of Pharmaceutical Compounds at Mineral Surfaces: Molecular Investigations of Dimer Formation at Goethite/Water Interfaces. Environmental Science & Technology, 2017, 51, 8343-8349.	10.0	25
34	Thin Ice Films at Mineral Surfaces. Journal of Physical Chemistry Letters, 2016, 7, 2849-2855.	4.6	17
35	Influence of chelation strength and bacterial uptake of gallium salicylidene acylhydrazide on biofilm formation and virulence of Pseudomonas aeruginosa. Journal of Inorganic Biochemistry, 2016, 160, 24-32.	3.5	9
36	Surface chemistry of carbon dioxide revisited. Surface Science Reports, 2016, 71, 595-671.	7.2	132

#	Article	IF	CITATIONS
37	Thermal decomposition of municipal solid waste fly ash and desorption of polychlorinated dibenzo-p-dioxins and furans from fly ash surfaces. Environmental Science and Pollution Research, 2016, 23, 22843-22851.	5.3	17
38	Surface and Bulk Thermal Dehydroxylation of FeOOH Polymorphs. Journal of Physical Chemistry A, 2016, 120, 6249-6257.	2.5	37
39	Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces. Scientific Reports, 2016, 6, 32136.	3.3	52
40	Millennia-old organic carbon in a boreal paleosol: chemical properties and their link to mineralizable carbon fraction. Journal of Soils and Sediments, 2016, 16, 85-94.	3.0	6
41	Oxolinic Acid Binding at Goethite and Akaganéite Surfaces: Experimental Study and Modeling. Environmental Science & Technology, 2016, 50, 660-668.	10.0	39
42	Bifluoride ([HF ₂] ^{â^'}) formation at the fluoridated aluminium hydroxide/water interface. Dalton Transactions, 2016, 45, 9045-9050.	3.3	12
43	Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study. Langmuir, 2015, 31, 13618-13624.	3.5	21
44	Thermal Stability of Goethite-Bound Natural Organic Matter Is Impacted by Carbon Loading. Journal of Physical Chemistry A, 2015, 119, 12790-12796.	2.5	7
45	Electrochemical Signatures of Crystallographic Orientation and Counterion Binding at the Hematite/Water Interface. Journal of Physical Chemistry C, 2015, 119, 5988-5994.	3.1	16
46	High-throughput characterization of sediment organic matter by pyrolysis–gas chromatography/mass spectrometry and multivariate curve resolution: A promising analytical tool in (paleo)limnology. Analytica Chimica Acta, 2015, 880, 93-102.	5.4	41
47	Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: an electrochemical impedance study using multivariate data analysis. Physical Chemistry Chemical Physics, 2015, 17, 11560-11568.	2.8	11
48	Kinetics and Mechanisms of Ciprofloxacin Oxidation on Hematite Surfaces. Environmental Science & Technology, 2015, 49, 12197-12205.	10.0	29
49	Thin Water Films at Multifaceted Hematite Particle Surfaces. Langmuir, 2015, 31, 13127-13137.	3.5	24
50	Proton and gallium(III) binding properties of a biologically active salicylidene acylhydrazide. Journal of Inorganic Biochemistry, 2014, 138, 9-15.	3.5	12
51	The gallium(III)–salicylidene acylhydrazide complex shows synergistic anti-biofilm effect and inhibits toxin production by Pseudomonas aeruginosa. Journal of Inorganic Biochemistry, 2014, 138, 1-8.	3.5	20
52	Oriented Aggregation of Lepidocrocite and Impact on Surface Charge Development. Langmuir, 2014, 30, 9017-9021.	3.5	20
53	Sorption of Phthalic Acid at Goethite Surfaces under Flow-Through Conditions. Langmuir, 2014, 30, 6800-6807.	3.5	26
54	Electrochemical Properties and Relaxation Times of the Hematite/Water Interface. Langmuir, 2014, 30, 9591-9598.	3.5	32

#	Article	IF	CITATIONS
55	The Variable Capacitance Model: A Strategy for Treating Contrasting Charge-Neutralizing Capabilities of Counterions at the Mineral/Water Interface. Langmuir, 2014, 30, 2009-2018.	3.5	14
56	Particle morphological and roughness controls on mineral surface charge development. Geochimica Et Cosmochimica Acta, 2014, 141, 567-578.	3.9	21
57	Link between Fly Ash Properties and Polychlorinated Organic Pollutants Formed during Simulated Municipal Solid Waste Incineration. Energy & Fuels, 2014, 28, 2761-2769.	5.1	7
58	Mineral surface charge development in mixed electrolyte solutions. Journal of Colloid and Interface Science, 2014, 418, 246-253.	9.4	12
59	Carbon Dioxide Binding at Dry FeOOH Mineral Surfaces: Evidence for Structure-Controlled Speciation. Environmental Science & amp; Technology, 2013, 47, 9241-9248.	10.0	21
60	Proton Binding and Ion Exchange at the Akaganéite/Water Interface. Journal of Physical Chemistry C, 2013, 117, 6409-6419.	3.1	31
61	Electrolyte Ion Binding at Iron Oxyhydroxide Mineral Surfaces. Langmuir, 2013, 29, 12129-12137.	3.5	24
62	X-ray Photoelectron Spectroscopy of Fast-Frozen Hematite Colloids in Aqueous Solutions. 5. Halide Ion (F–, Cl–, Br–, I–) Adsorption. Langmuir, 2013, 29, 2623-2630.	3.5	32
63	Water vapor interactions with FeOOH particle surfaces. Chemical Physics Letters, 2013, 560, 1-9.	2.6	22
64	Water Vapor Adsorption on Goethite. Environmental Science & amp; Technology, 2013, 47, 7171-7177.	10.0	35
65	Water Vapor Diffusion into a Nanostructured Iron Oxyhydroxide. Inorganic Chemistry, 2013, 52, 7107-7113.	4.0	11
66	Identification of Fluoride and Phosphate Binding Sites at FeOOH Surfaces. Journal of Physical Chemistry C, 2012, 116, 21939-21947.	3.1	44
67	Structural controls on OH site availability and reactivity at iron oxyhydroxide particle surfaces. Physical Chemistry Chemical Physics, 2012, 14, 2579.	2.8	46
68	Water Structure and Hydrogen Bonding at Goethite/Water Interfaces: Implications for Proton Affinities. Journal of Physical Chemistry C, 2012, 116, 4714-4724.	3.1	59
69	X-ray photoelectron spectroscopy of fast-frozen hematite colloids in aqueous solutions. 4. Coexistence of alkali metal (Na+, K+, Rb+, Cs+) and chloride ions. Surface Science, 2012, 606, 1005-1009.	1.9	30
70	Variable Hydrogen Bond Strength in Akaganéite. Journal of Physical Chemistry C, 2012, 116, 2303-2312.	3.1	32
71	Electrochemical Impedance Study of the Hematite/Water Interface. Langmuir, 2012, 28, 7914-7920.	3.5	73
72	The Effect of pH and Time on the Extractability and Speciation of Uranium(VI) Sorbed to SiO ₂ . Environmental Science & Technology, 2012, 46, 6604-6611.	10.0	38

#	Article	IF	CITATIONS
73	Competitive ligand exchange on akaganéite surfaces enriches bulk chloride loadings. Journal of Colloid and Interface Science, 2012, 376, 331-333.	9.4	24
74	Crystallographic controls on uranyl binding at the quartz/water interface. Physical Chemistry Chemical Physics, 2011, 13, 7845.	2.8	14
75	X-ray Photoelectron Spectroscopy of Fast-Frozen Hematite Colloids in Aqueous Solutions. 3. Stabilization of Ammonium Species by Surface (Hydr)oxo Groups. Journal of Physical Chemistry C, 2011, 115, 6796-6801.	3.1	34
76	Surface Hydroxyl Identity and Reactivity in Akaganéite. Journal of Physical Chemistry C, 2011, 115, 17036-17045.	3.1	30
77	Determining individual mineral contributions to U(VI) adsorption in a contaminated aquifer sediment: A fluorescence spectroscopy study. Geochimica Et Cosmochimica Acta, 2011, 75, 2965-2979.	3.9	35
78	Inner-Helmholtz potential development at the hematite (α-Fe2O3) (001) surface. Geochimica Et Cosmochimica Acta, 2011, 75, 4113-4124.	3.9	35
79	Density functional calculation of the infrared spectrum of surface hydroxyl groups on goethite (Â-FeOOH). American Mineralogist, 2010, 95, 414-417.	1.9	34
80	Sorption of Two Naphthoic Acids to Goethite Surface under Flow through Conditions. Environmental Science & Technology, 2010, 44, 8863-8869.	10.0	30
81	Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2787-2792.	7.1	312
82	FTIR Spectral Components of Schwertmannite. Environmental Science & Technology, 2010, 44, 1185-1190.	10.0	75
83	X-ray Photoelectron Spectroscopy of Fast-Frozen Hematite Colloids in Aqueous Solutions. 2. Tracing the Relationship between Surface Charge and Electrolyte Adsorption. Journal of Physical Chemistry C, 2010, 114, 2613-2616.	3.1	25
84	Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology, 2009, 262, 169-178.	3.3	83
85	Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide Surfaces. Journal of Physical Chemistry C, 2009, 113, 16568-16570.	3.1	6
86	Elucidation of oxyanion coordination geometries at solid surfaces of varied electric field strengths. Physical Chemistry Chemical Physics, 2009, 11, 8133.	2.8	11
87	An independent confirmation of the correlation of Uf4 primary peaks and satellite structures of UVI, UV and UIV in mixed valence uranium oxides by two-dimensional correlation spectroscopy. Surface Science, 2008, 602, 3637-3646.	1.9	19
88	XPS study of the hematite–aqueous solution interface. Surface and Interface Analysis, 2008, 40, 349-353.	1.8	26
89	On the protonation of oxo- and hydroxo-groups of the goethite (α-FeOOH) surface: A FTIR spectroscopic investigation of surface O–H stretching vibrations. Geochimica Et Cosmochimica Acta, 2008, 72, 3338-3357.	3.9	79
90	Charge Localization in Cationâ^'Sulfate Complexes:  Implications for Thermodynamic Surface Complexation Models of the Mineral/Water Interface. Journal of Physical Chemistry C, 2007, 111, 1299-1306.	3.1	6

#	Article	IF	CITATIONS
91	Effects of Surface Coordination on the Temperature-Programmed Desorption of Oxalate from Goethite. Journal of Physical Chemistry C, 2007, 111, 17072-17081.	3.1	12
92	XPS of Fast-Frozen Hematite Colloids in NaCl Aqueous Solutions:  I. Evidence for the Formation of Multiple Layers of Hydrated Sodium and Chloride Ions Induced by the {001} Basal Plane. Journal of Physical Chemistry C, 2007, 111, 18307-18316.	3.1	44
93	A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite. Geochimica Et Cosmochimica Acta, 2006, 70, 3613-3624.	3.9	43
94	Dissociation of Fumaric Acid: Spectrophotometric Investigation in Aqueous Solutions from 10 to 90 â~C and Theoretical Considerations. Journal of Solution Chemistry, 2005, 34, 1167-1190.	1.2	11
95	On the Dissociation of Methyl Orange: Spectrophotometric Investigation in Aqueous Solutions from 10 to 90 â~C and Theoretical Evidence for Intramolecular Dihydrogen Bonding. Journal of Solution Chemistry, 2005, 34, 1387-1406.	1.2	26
96	AIM and ELF Analyses and Gas-Phase Acidities of Some Main-Group Oxyacids (HzXO4, X = Cl, S, P, Si and) Tj ETQq	0.0.0 rgB⊺ 2.5	Г /Qverlock I
97	Intramolecular Bonding and Charge Distributions in XO4(X = Si, P, S, Cl and Ge, As, Se, Br) Oxyanions from Topological Analyses of the Electron Density. Journal of Physical Chemistry A, 2002, 106, 4718-4724.	2.5	13
98	Benzenecarboxylate Surface Complexation at the Goethite (α-FeOOH)/Water Interface. Journal of Colloid and Interface Science, 2000, 227, 132-140.	9.4	34

	Benzenecarboxylate surface complexation at the goethite ($\hat{I}\pm$ -FeOOH)/water interface: II. Linking IR		
99	spectroscopic observations to mechanistic surface complexation models for phthalate, trimellitate,	3.9	104
	and pyromellitate. Geochimica Et Cosmochimica Acta, 2000, 64, 3453-3470.		