List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9552884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitosan Cross-Linking with Acetaldehyde Acetals. Biomimetics, 2022, 7, 10.	1.5	6
2	Influence of mechanochemical activation on dissolving model corrosion films formed on ion-exchange resins using Trilon B. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2022, 11, 663-672.	0.1	0
3	Sponge-like Scaffolds for Colorectal Cancer 3D Models: Substrate-Driven Difference in Micro-Tumors Morphology. Biomimetics, 2022, 7, 56.	1.5	3
4	Composite Zn(II) Ferrocyanide/Polyethylenimine Cryogels for Point-of-Use Selective Removal of Cs-137 Radionuclides. Molecules, 2021, 26, 4604.	1.7	4
5	Hydrothermal oxidation of pre-dissolved resorcinol-formaldehyde resins as a new approach to safe processing of spent cesium-selective organic ion-exchangers. Journal of Hazardous Materials, 2021, 416, 125880.	6.5	3
6	Carboxyalkylchitosan-based hydrogels with "imine clip― Enhanced stability and amino acids-induced disassembly under physiological conditions. Carbohydrate Polymers, 2021, 274, 118618.	5.1	12
7	Stimuli-Responsive Dual Cross-Linked N-Carboxyethylchitosan Hydrogels with Tunable Dissolution Rate. Gels, 2021, 7, 188.	2.1	14
8	Dataset on pore water composition and grain size properties of bottom sediments and subsea permafrost from the Buor-Khaya Bay (Laptev Sea). Data in Brief, 2021, 39, 107580.	0.5	3
9	Extended Rate Constant Distribution Model for Sorption in Heterogeneous Systems. 1: Application to Kinetics of Metal Ion Sorption on Polyethyleneimine Cryogels. Industrial & Engineering Chemistry Research, 2020, 59, 1123-1134.	1.8	6
10	Ultrasensitive SERS-Based Plasmonic Sensor with Analyte Enrichment System Produced by Direct Laser Writing. Nanomaterials, 2020, 10, 49.	1.9	37
11	Extended Rate Constant Distribution Model for Sorption in Heterogeneous Systems: 3. From Batch to Fixed-Bed Application and Predictive Modeling. Industrial & Engineering Chemistry Research, 2020, 59, 19415-19425.	1.8	3
12	Supermacroporous monoliths based on polyethyleneimine: Fabrication and sorption properties under static and dynamic conditions. Journal of Environmental Chemical Engineering, 2020, 8, 104395.	3.3	17
13	Rational Design of Polyamine-Based Cryogels for Metal Ion Sorption. Molecules, 2020, 25, 4801.	1.7	9
14	Extended Rate Constants Distribution (RCD) Model for Sorption in Heterogeneous Systems: 2. Importance of Diffusion Limitations for Sorption Kinetics on Cryogels in Batch. Gels, 2020, 6, 15.	2.1	11
15	Effect of regioselectivity of chitosan carboxyalkylation and type of cross-linking on the metal-chelate sorption properties toward ciprofloxacin. Reactive and Functional Polymers, 2020, 150, 104536.	2.0	4
16	Ligand-assisted synthesis and cytotoxicity of ZnSe quantum dots stabilized by N-(2-carboxyethyl)chitosans. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110342.	2.5	12
17	Chemical modification of polyvinyl chloride with thiourea. Russian Chemical Bulletin, 2019, 68, 1248-1251.	0.4	7
18	Ultratrace Nitroaromatic Vapor Detection via Surface-Enhanced Fluorescence on Carbazole-Terminated Black Silicon. ACS Sensors, 2019, 4, 2879-2884.	4.0	32

#	Article	IF	CITATIONS
19	A novel rhodamine-based turn-on probe for fluorescent detection of Au3+ and colorimetric detection of Cu2+. Tetrahedron, 2019, 75, 1492-1496.	1.0	23
20	Metal-chelate sorbents based on carboxyalkylchitosans: Ciprofloxacin uptake by Cu(II) and Al(III)-chelated cryogels of N-(2-carboxyethyl)chitosan. International Journal of Biological Macromolecules, 2019, 131, 806-811.	3.6	27
21	A new approach to the green synthesis of imidazole-containing polymer ligands and cryogels. European Polymer Journal, 2019, 115, 356-363.	2.6	9
22	Chitosan Gels and Cryogels Cross-Linked with Diglycidyl Ethers of Ethylene Glycol and Polyethylene Glycol in Acidic Media. Biomacromolecules, 2019, 20, 1635-1643.	2.6	51
23	Cryogels of carboxyalkylchitosans as a universal platform for the fabrication of composite materials. Carbohydrate Polymers, 2019, 209, 1-9.	5.1	14
24	Quantum chemistry and experimental studies of hydrothermal destruction of Co-EDTA complexes. Journal of Hazardous Materials, 2019, 363, 233-241.	6.5	11
25	Mn2+ and Cu2+-doped ZnS quantum dots stabilized by N-(2-carboxyethyl)chitosans. , 2019, , .		0
26	REMOVAL OF ALIZARIN RED BY SUPERMACROPOROUS CROSS-LINKED CHITOSAN MONOLITH SORBENTS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2019, XXIV, 164-171.	0.1	0
27	Chemically non-perturbing SERS detection of a catalytic reaction with black silicon. Nanoscale, 2018, 10, 9780-9787.	2.8	50
28	Comparison of Commercial and Reacetylated Chitosan with Regard to Their Flocculation Quality. Chemie-Ingenieur-Technik, 2018, 90, 324-332.	0.4	1
29	Polyethyleneimine cryogels for metal ions sorption. Chemical Engineering Journal, 2018, 334, 1392-1398.	6.6	50
30	New Chitosan/Iron Oxide Composites: Fabrication and Application for Removal of Sr2+ Radionuclide from Aqueous Solutions. Biomimetics, 2018, 3, 39.	1.5	13
31	Dendrimeric rhodamine based fluorescent probe for selective detection of Au. Sensors and Actuators B: Chemical, 2018, 273, 916-920.	4.0	15
32	Thiocarbamoylation of Chlorosulfonated Polystyrene for Preparing Sorbents for Noble Metal Ions. Russian Journal of Applied Chemistry, 2018, 91, 292-296.	0.1	1
33	Thiocarbamoyl derivatives of polyallylamine for gold and silver recovery from ammonia-thiosulfate leachates. Non-ferrous Metals, 2018, , 12-17.	0.4	4
34	Special Features of Copper(II) Detection in Aqueous Solutions. Physics Procedia, 2017, 86, 152-154.	1.2	1
35	On/off rhodamine based fluorescent probe for detection of Au and Pd in aqueous solutions. Sensors and Actuators B: Chemical, 2017, 246, 389-394.	4.0	36
36	Flocculation efficiency of reacetylated water soluble chitosan versus commercial chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 222-227.	2.3	11

#	Article	IF	CITATIONS
37	Characteristic of quaternary sedimentation on a shelf of the Laptev Sea according to the molecular composition of n-alkanes. Doklady Earth Sciences, 2017, 473, 449-453.	0.2	10
38	Organic and carbonate carbon in permafrost and thawed deposits from Buor-Khaya Bay (Laptev Sea). Doklady Earth Sciences, 2017, 473, 467-471.	0.2	8
39	Alkanes in Quaternary deposits of the Laptev Sea. Doklady Earth Sciences, 2017, 472, 36-39.	0.2	9
40	HIGHLY SENSITIVE CHITOSAN-BASED OPTICAL FLUORESCENT SENSOR FOR GASEOUS METHYLAMINE DETECTION. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 159-165.	0.1	6
41	Chitosan and Its Derivatives as Highly Efficient Polymer Ligands. Molecules, 2016, 21, 330.	1.7	101
42	Metal ion binding by pyridylethyl-containing polymers: experimental and theoretical study. Dalton Transactions, 2016, 45, 12372-12383.	1.6	11
43	Granulated catalytic materials based on chitosan and its derivatives. Polymer Science - Series B, 2016, 58, 730-735.	0.3	6
44	Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review. Cellulose, 2016, 23, 2273-2289.	2.4	42
45	Particle size composition of Holocene–Pleistocene deposits of the Laptev Sea (Buor-Khaya Bay). Doklady Earth Sciences, 2016, 467, 241-245.	0.2	11
46	Lignin as an indicator of the sedimentation conditions on the Arctic shelf. Doklady Earth Sciences, 2016, 467, 264-269.	0.2	10
47	Recovery of Au(III), Pt(IV), and Pd(II) Using Pyridylethyl-Containing Polymers: Chitosan Derivatives vs Synthetic Polymers. Industrial & Engineering Chemistry Research, 2016, 55, 10377-10385.	1.8	21
48	A new approach to preparation of granulated materials based on chitosan and its imidazole derivative. Russian Journal of Applied Chemistry, 2016, 89, 955-959.	0.1	3
49	Novel UV probe for selective detection of Au and Pd in aqueous solutions. , 2016, , .		Ο
50	One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan. Carbohydrate Polymers, 2016, 151, 649-655.	5.1	37
51	Role of Au(III) coordination by polymer in âį;greenâ;į synthesis of gold nanoparticles using chitosan derivatives. International Journal of Biological Macromolecules, 2016, 91, 457-464.	3.6	17
52	Polycyclic aromatic hydrocarbons in Holocene–Pleistocene sediments of the Laptev Sea. Doklady Earth Sciences, 2016, 468, 496-499.	0.2	2
53	Imidazolyl derivative of chitosan with high substitution degree: Synthesis, characterization and sorption properties. Carbohydrate Polymers, 2016, 138, 252-258.	5.1	14
54	Cesium uptake by pentacyanoferrate(II) complexes with O-containing derivatives of chitosan. Separation Science and Technology, 2016, 51, 594-600.	1.3	5

#	Article	IF	CITATIONS
55	H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sensors and Actuators B: Chemical, 2016, 225, 348-353.	4.0	52
56	Effect of polymer backbone chemical structure on metal ions binding by imidazolylmethyl derivatives. Chemical Engineering Journal, 2016, 283, 323-329.	6.6	14
57	Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry. Carbohydrate Polymers, 2015, 134, 680-686.	5.1	24
58	Binding Ni(II) ions to chitosan and its N-heterocyclic derivatives: Density functional theory investigation. Computational and Theoretical Chemistry, 2015, 1069, 4-10.	1.1	19
59	Hydrogenation of alkenes and their derivatives in the presence of nano-sized metal iridium. Russian Journal of Organic Chemistry, 2015, 51, 279-280.	0.3	4
60	Mechanism of Au(III) reduction by chitosan: Comprehensive study with 13C and 1H NMR analysis of chitosan degradation products. Carbohydrate Polymers, 2015, 117, 70-77.	5.1	61
61	Polymer–Inorganic Coatings Containing Nanosized Sorbents Selective to Radionuclides. 2. Latex/Tin Oxide Composites for Cobalt Fixation. ACS Applied Materials & Interfaces, 2014, 6, 22387-22392.	4.0	6
62	Pentacyanoferrate(II) complexes with chitosan. Polymer Engineering and Science, 2014, 54, 2392-2397.	1.5	2
63	Flocculation Efficiency of Novel Amphiphilic Starch Derivatives: A Comparative Study. Macromolecular Materials and Engineering, 2014, 299, 722-728.	1.7	8
64	Fabrication and optical properties of chitosan/Ag nanoparticles thin film composites. Chemical Engineering Journal, 2014, 244, 457-463.	6.6	45
65	Dust suppression composite coatings containing nanosized selective sorbents for the prevention of cesium radionuclide migration. Doklady Physical Chemistry, 2014, 454, 12-15.	0.2	1
66	Polymer-Inorganic Coatings Containing Nanosized Sorbents Selective to Radionuclides. 1. Latex/Cobalt Hexacyanoferrate(II) Composites for Cesium Fixation. ACS Applied Materials & Interfaces, 2014, 6, 16769-16776.	4.0	14
67	Dissolved organic matter in lysimetric water of mountain forest soils in the southern Sikhote Alin. Eurasian Soil Science, 2014, 47, 581-590.	0.5	4
68	Preparation of a sorbent for metal ions based on N-(5-methylimidazol-4-ylmethyl) chitosan with medium degree of substitution. Russian Journal of Applied Chemistry, 2014, 87, 82-87.	0.1	12
69	Pentacyanoferrate(II) complexes with N-containing derivatives of chitosan and polyallylamine: Synthesis and cesium uptake properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 145-150.	2.3	3
70	Integrated-optical sensors based on chitosan waveguide films for relative humidity measurements. Sensors and Actuators B: Chemical, 2013, 188, 482-487.	4.0	37
71	Synthesis and properties of isomeric pyridyl-containing chitosan derivatives. International Journal of Biological Macromolecules, 2013, 62, 426-432.	3.6	22
72	Interaction of N-acylated and N-alkylated chitosans included in liposomes with lipopolysaccharide of gram-negative bacteria. Biochemistry (Moscow), 2013, 78, 301-308.	0.7	6

#	Article	IF	CITATIONS
73	Physicochemical and electron-microscopic study of carrageenans, sulfated polysaccharides from red algae of the families Tichocarpaceae and Gigartinaceae. Chemistry of Natural Compounds, 2013, 49, 593-595.	0.2	2
74	Sol–gel synthesis of porous inorganic materials using "core–shell―latex particles as templates. Journal of Sol-Gel Science and Technology, 2013, 68, 374-386.	1.1	21
75	pH-indicators doped polysaccharide LbL coatings for hazardous gases optical sensing. Carbohydrate Polymers, 2013, 92, 769-774.	5.1	20
76	Germanium speciation in lignite from a germanium-bearing deposit in Primorye. Geochemistry International, 2013, 51, 405-412.	0.2	12
77	Imidazole-containing chitosan derivative: a new synthetic approach and sorption properties. Russian Chemical Bulletin, 2012, 61, 1959-1964.	0.4	23
78	N-(2-(2-pyridyl)ethyl)chitosan: Synthesis, characterization and sorption properties. Carbohydrate Polymers, 2012, 87, 869-875.	5.1	53
79	Investigation of the humidity influence on optical properties of chitosan thin films by spectroscopic ellipsometry. Physics Procedia, 2012, 23, 110-114.	1.2	1
80	Investigation of humidity influence upon waveguide features of chitosan thin films. Physics Procedia, 2012, 23, 115-118.	1.2	7
81	Humic acids in brown coals from the southern Russian Far East: General characteristics and interactions with precious metals. Geochemistry International, 2012, 50, 437-446.	0.2	16
82	Effect of relative humidity on the optical and waveguide properties of thin chitosan films. Technical Physics Letters, 2012, 38, 228-230.	0.2	5
83	Adsorption of Cesium Radionuclides by the Composite Sorbents Carbon Fiber/Transition Metals Ferrocyanides. , 2011, , .		Ο
84	Pilot Test of Precipitation Setup for Dust Supressor and Transuranic Elements Removal From Wastewaters of Chernobyl Nuclear Power Plant. , 2011, , .		0
85	N-2-(2-pyridyl)ethyl chitosan: Synthesis in gel and sorption properties. Russian Journal of Applied Chemistry, 2011, 84, 713-718.	0.1	16
86	Sorption of cesium radionuclides with composite carbon fibrous materials. Russian Journal of Applied Chemistry, 2011, 84, 1152-1157.	0.1	6
87	Preparation and properties of liposomes coated with N-acylated low-molecular-weight chitosan. Chemistry of Natural Compounds, 2011, 46, 852-856.	0.2	3
88	Thiocarbamoyl chitosan: Synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II). Carbohydrate Polymers, 2011, 85, 854-861.	5.1	55
89	Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides. Journal of Hazardous Materials, 2011, 186, 1343-1350.	6.5	113
90	Design and fabrication of a chitosan based integrated optical device for humidity sensing. Proceedings of SPIE, 2011, , .	0.8	0

#	Article	IF	CITATIONS
91	Implementation of the continuous-flow hydrothermal technology of the treatment of concentrated liquid radioactive wastesat nuclear power plants. Theoretical Foundations of Chemical Engineering, 2010, 44, 592-599.	0.2	8
92	Composite sorbents for recovery of cesium radionuclides. Russian Journal of Applied Chemistry, 2010, 83, 2115-2120.	0.1	6
93	Thiocarbamoyl chitosan as a novel sorbent with high sorption capacity and selectivity for the ions of gold(III), platinum(IV), and palladium(II). Russian Chemical Bulletin, 2010, 59, 1303-1306.	0.4	11
94	Macroporous catalysts for liquid-phase oxidation on the basis of manganese oxides containing gold nanoparticles. Doklady Physical Chemistry, 2010, 435, 193-197.	0.2	10
95	Latex Particles Functionalized With Transition Metals Ferrocyanides for Cesium Uptake and Decontamination of Solid Bulk Materials. , 2010, , .		1
96	Heavy metals removal by flocculation/precipitation using N-(2-carboxyethyl)chitosans. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339, 140-144.	2.3	79
97	Covalent immobilization of chitosan on surfaces with anchoring layers of poly(glycidyl) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	10 Tf 50 50
98	A new approach to precious metals recovery from brown coals: Correlation of recovery efficacy with the mechanism of metal–humic interactions. Geochimica Et Cosmochimica Acta, 2009, 73, 3301-3310.	1.6	26
99	Comparative study of electrokinetic potentials and binding affinity of lipopolysaccharides–chitosan complexes. Biophysical Chemistry, 2008, 136, 1-6.	1.5	14
100	Flocculation and binding properties of highly substituted cationic starches. Russian Journal of Applied Chemistry, 2008, 81, 862-866.	0.1	6
101	Colloid-stable nanosized selective sorbents for decontamination of bulk materials. Doklady Chemistry, 2008, 422, 251-254.	0.2	8
102	Charge characteristics of humic and fulvic acids: Comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model. Chemosphere, 2008, 73, 557-563.	4.2	27
103	Adhesion and Viability of Two Enterococcal Strains on Covalently Grafted Chitosan and Chitosan∫lº-Carrageenan Multilayers. Biomacromolecules, 2007, 8, 2960-2968.	2.6	80
104	Cationic Starches of High Degree of Functionalization:Â 12. Modification of Cellulose Fibers toward High Filler Technology in Papermaking. Industrial & Engineering Chemistry Research, 2006, 45, 7374-7379.	1.8	31
105	Properties and Flocculation Efficiency of Highly Cationized Starch Derivatives. Starch/Staerke, 2006, 58, 161-169.	1.1	76
106	Enhanced flocculation of oil-in-water emulsions by hydrophobically modified chitosan derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275, 168-176.	2.3	128
107	Starch derivatives of high degree of functionalization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 254, 75-80.	2.3	71
108	Effect of Polyelectrolyte Structural Features on Flocculation Behavior: Cationic Polysaccharides vs. Synthetic Polycations. Macromolecular Materials and Engineering, 2005, 290, 778-785.	1.7	48

#	Article	IF	CITATIONS
109	Polypropylene surface functionalization with chitosan. Journal of Adhesion Science and Technology, 2004, 18, 1173-1186.	1.4	28
110	Modification of Black Film Hydration by Infrared Irradiation. Langmuir, 2004, 20, 1047-1050.	1.6	15
111	Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Water Research, 2004, 38, 2955-2961.	5.3	104
112	Interaction of Carboxylic Acids with Chitosan: Effect of pK and Hydrocarbon Chain Length. Journal of Colloid and Interface Science, 2002, 249, 316-321.	5.0	47
113	Title is missing!. Russian Chemical Bulletin, 2002, 51, 1006-1008.	0.4	0
114	Flocculation of Humic Substances and Their Derivatives with Chitosan. Colloid Journal, 2002, 64, 681-686.	0.5	17
115	Sorption of Anionic Polysaccharides and Bovine Serum Albumin on a Macroporous Glass. Colloid Journal, 2001, 63, 137-141.	0.5	5
116	Thin Chitosan Films for Optical Gas Sensors. Key Engineering Materials, 0, 605, 536-539.	0.4	7