Wen-Ting Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9552544/publications.pdf

Version: 2024-02-01

147801 161849 4,377 54 31 54 citations h-index g-index papers 58 58 58 7757 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nature Communications, 2018, 9, 5395.	12.8	613
2	The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. Journal of Clinical Investigation, 2009, 119, 3626-3636.	8.2	365
3	KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell, 2019, 35, 559-572.e7.	16.8	353
4	Bmi-1 Is a Novel Molecular Marker of Nasopharyngeal Carcinoma Progression and Immortalizes Primary Human Nasopharyngeal Epithelial Cells. Cancer Research, 2006, 66, 6225-6232.	0.9	306
5	Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature, 2017, 542, 119-123.	27.8	209
6	Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth. Cell, 2016, 167, 1281-1295.e18.	28.9	207
7	Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature, 2017, 542, 484-488.	27.8	173
8	Oncogenic <i>Kras</i> drives invasion and maintains metastases in colorectal cancer. Genes and Development, 2017, 31, 370-382.	5.9	137
9	<scp>MicroRNA</scp> â€30b functions as a tumour suppressor in human colorectal cancer by targeting <i><scp>KRAS</scp></i> , <i><scp>PIK3CD</scp></i> and <scp><i>BCL2</i></scp> . Journal of Pathology, 2014, 232, 415-427.	4.5	129
10	HOXB7 as a Prognostic Factor and Mediator of Colorectal Cancer Progression. Clinical Cancer Research, 2011, 17, 3569-3578.	7.0	119
11	Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment. Cancer Discovery, 2020, 10, 608-625.	9.4	119
12	Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell, 2022, 40, 153-167.e11.	16.8	118
13	microRNA-224 Promotes Cell Proliferation and Tumor Growth in Human Colorectal Cancer by Repressing <i>PHLPP1</i> and <i>PHLPP2</i> Clinical Cancer Research, 2013, 19, 4662-4672.	7.0	110
14	MicroRNA-224 sustains Wnt/ \hat{l}^2 -catenin signaling and promotes aggressive phenotype of colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 21.	8.6	82
15	TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/ \hat{l}^2 -catenin and MAPK signalling. Journal of Pathology, 2016, 239, 60-71.	4.5	80
16	FOXC2 promotes colorectal cancer proliferation through inhibition of FOXO3a and activation of MAPK and AKT signaling pathways. Cancer Letters, 2014, 353, 87-94.	7.2	71
17	USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes and Development, 2019, 33, 1361-1366.	5.9	65
18	Centromere protein H is a novel prognostic marker for human nonsmall cell lung cancer progression and overall patient survival. Cancer, 2009, 115, 1507-1517.	4.1	61

#	Article	IF	CITATIONS
19	The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer. Oncotarget, 2015, 6, 9099-9112.	1.8	57
20	CDK5 functions as a tumor promoter in human colorectal cancer via modulating the ERK5–AP-1 axis. Cell Death and Disease, 2016, 7, e2415-e2415.	6.3	51
21	Centromere Protein H Is a Novel Prognostic Marker for Nasopharyngeal Carcinoma Progression and Overall Patient Survival. Clinical Cancer Research, 2007, 13, 508-514.	7.0	50
22	High Expression of FLOT1 Is Associated with Progression and Poor Prognosis in Hepatocellular Carcinoma. PLoS ONE, 2013, 8, e64709.	2.5	48
23	miR-422a inhibits cell proliferation in colorectal cancer by targeting AKT1 and MAPK1. Cancer Cell International, 2017, 17, 91.	4.1	45
24	FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Letters, 2018, 439, 78-90.	7.2	44
25	KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene, 2020, 39, 249-261.	5.9	43
26	Telomere dysfunction activates YAP1 to drive tissue inflammation. Nature Communications, 2020, 11, 4766.	12.8	42
27	Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. Journal of Experimental and Clinical Cancer Research, 2021, 40, 304.	8.6	42
28	MicroRNA-34a targets FMNL2 and E2F5 and suppresses the progression of colorectal cancer. Experimental and Molecular Pathology, 2015, 99, 173-179.	2.1	41
29	MiR-384 inhibits human colorectal cancer metastasis by targeting KRAS and CDC42. Oncotarget, 2016, 7, 84826-84838.	1.8	40
30	The tumor-suppressor gene Nkx2.8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway. Carcinogenesis, 2012, 33, 678-686.	2.8	36
31	CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. Journal of Experimental and Clinical Cancer Research, 2020, 39, 168.	8.6	36
32	Hybrid Al-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nature Communications, 2021, 12, 3541.	12.8	36
33	TLE4 promotes colorectal cancer progression through activation of JNK/c-Jun signaling pathway. Oncotarget, 2016, 7, 2878-2888.	1.8	35
34	The LncRNA ZBED3-AS1 induces chondrogenesis of human synovial fluid mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2017, 487, 457-463.	2.1	35
35	The positive feedback between Snail and DAB2IP regulates EMT, invasion and metastasis in colorectal cancer. Oncotarget, 2015, 6, 27427-27439.	1.8	33
36	Hypermethylation of DMTN promotes the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through Rac1 signaling activation. Journal of Experimental and Clinical Cancer Research, 2018, 37, 299.	8.6	32

#	Article	IF	CITATIONS
37	Downregulation of <i>SAFB</i> Sustains the NF- κ B Pathway by Targeting <i>TAK1</i> during the Progression of Colorectal Cancer. Clinical Cancer Research, 2017, 23, 7108-7118.	7.0	31
38	miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget, 2016, 7, 61312-61324.	1.8	31
39	The tumor-suppressor gene LZTS1 suppresses colorectal cancer proliferation through inhibition of the AKT–mTOR signaling pathway. Cancer Letters, 2015, 360, 68-75.	7.2	26
40	FOXF1 Induces Epithelial-Mesenchymal Transition in Colorectal Cancer Metastasis by Transcriptionally Activating SNAI1. Neoplasia, 2018, 20, 996-1007.	5. 3	25
41	STX2 promotes colorectal cancer metastasis through a positive feedback loop that activates the NF-κB pathway. Cell Death and Disease, 2018, 9, 664.	6.3	25
42	Downregulation of Foxc2 enhances apoptosis induced by 5-fluorouracil through activation of MAPK and AKT pathways in colorectal cancer. Oncology Letters, 2016, 11, 1549-1554.	1.8	24
43	HDAC10 upregulation contributes to interleukin $1\hat{l}^2\hat{a}$ mediated inflammatory activation of synovium \hat{a} ederived mesenchymal stem cells in temporomandibular joint. Journal of Cellular Physiology, 2019, 234, 12646-12662.	4.1	22
44	Upregulation of CENP-H in tongue cancer correlates with poor prognosis and progression. Journal of Experimental and Clinical Cancer Research, 2009, 28, 74.	8.6	20
45	Overexpression of centromere protein H is significantly associated with breast cancer progression and overall patient survival. Chinese Journal of Cancer, 2011, 30, 627-637.	4.9	18
46	Suberoylanilide Hydroxamic Acid Attenuates Interleukin- $1\hat{1}^2$ -Induced Interleukin-6 Upregulation by Inhibiting the Microtubule Affinity-Regulating Kinase 4/Nuclear Factor- $\hat{1}^{\circ}$ B Pathway in Synovium-Derived Mesenchymal Stem Cells from the Temporomandibular Joint. Inflammation, 2020, 43, 1246-1258.	3.8	15
47	UBN2 promotes tumor progression via the Ras/MAPK pathway and predicts poor prognosis in colorectal cancer. Cancer Cell International, 2019, 19, 126.	4.1	13
48	Significance of FBX8 in progression of gastric cancer. Experimental and Molecular Pathology, 2015, 98, 360-366.	2.1	12
49	FBX8 promotes metastatic dormancy of colorectal cancer in liver. Cell Death and Disease, 2020, 11, 622.	6.3	10
50	Jade family PHD finger 3 (JADE3) increases cancer stem cell-like properties and tumorigenicity in colon cancer. Cancer Letters, 2018, 428, 1-11.	7.2	9
51	Rapamycin-Induced Autophagy Promotes the Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells in the Temporomandibular Joint in Response to IL- $1\hat{l}^2$. BioMed Research International, 2020, 2020, 1-12.	1.9	8
52	FOXS1 Promotes Tumor Progression by Upregulating CXCL8 in Colorectal Cancer. Frontiers in Oncology, 0, 12 , .	2.8	4
53	Histone deacetylase inhibitors attenuated interleukin- $1\hat{l}^2$ -induced chondrogenesis inhibition in synovium-derived mesenchymal stem cells of the temporomandibular joint. Bone and Joint Research, 2022, 11, 40-48.	3.6	3
54	Effects of interleukin $1\hat{l}^2$ on long noncoding RNA and mRNA expression profiles of human synovial fluid derived mesenchymal stem cells. Scientific Reports, 2022, 12, 8432.	3.3	1