Ammathnadu S Achalkumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9552357/publications.pdf

Version: 2024-02-01

64 papers

1,932 citations

172207 29 h-index 276539 41 g-index

65 all docs

 $\begin{array}{c} 65 \\ \text{docs citations} \end{array}$

65 times ranked 1700 citing authors

#	Article	IF	CITATIONS
1	A New Class of Solution Processable Pyrazino[2,3â€g]quinoxaline Carbazole Derivative Based on D–A–D Architecture for Achieving High EQE in Yellow and White OLEDs. Advanced Optical Materials, 2022, 10,	3.6	6
2	Experimental and theoretical investigations of acid sensing properties of pyrazino[2,3-g]quinoxaline derivatives. Journal of Molecular Structure, 2021, 1225, 129120.	1.8	10
3	Room-Temperature, Deep-Red/NIR-Emissive, <i>C</i> ₃ -Symmetric (n,ï€-conjugated) Columnar Liquid Crystals: <i>C</i> _{3<i>h</i>} -Tris(keto-hydrazone)s. ACS Omega, 2021, 6, 3291-3306.	1.6	5
4	Metal-free Câ€"H functionalization of pyrrolidine to pyrrolinium-based room temperature ionic liquid crystals. New Journal of Chemistry, 2021, 45, 8064-8071.	1.4	3
5	Structure–property relationships of quinoxaline-based liquid crystals. Soft Matter, 2021, 17, 8221-8257.	1.2	6
6	Effect of Photonic Band Gap on Photoluminescence in a Dye-Doped Blue Phase Liquid Crystal. Journal of Physical Chemistry B, 2021, 125, 11582-11590.	1.2	7
7	Synthesis and Liquid Crystalline Properties of Low Molecular Weight Bis-Chalcone Compounds. Current Organic Synthesis, 2021, 18, .	0.7	0
8	Functional Ionic Liquid Crystals. Langmuir, 2020, 36, 11702-11731.	1.6	82
9	Helical supramolecular polymers with rationally designed binding sites for chiral guest recognition. Nature Communications, 2020, 11, 2311.	5.8	37
10	Influence of inter- and intramolecular H-bonding on the mesomorphic and photoswitching behaviour of (E)-4-((4-(hexyloxy)phenyl)diazenyl)-N-phenyl benzamides. RSC Advances, 2020, 10, 20222-20230.	1.7	6
11	Influence of lateral methyl/chloro substituents on the liquid crystalline and photoswitching behaviour of bent-core mesogens bearing azobenzene wings: synthesis and characterization. New Journal of Chemistry, 2020, 44, 5731-5738.	1.4	7
12	Perylene-Based Liquid Crystals as Materials for Organic Electronics Applications. Langmuir, 2019, 35, 2455-2479.	1.6	73
13	Room-Temperature Columnar Liquid Crystalline Materials Based on Pyrazino[2,3-g]quinoxaline for Bright Green Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2019, 1, 1959-1969.	2.0	17
14	Heteroatom Bay-Annulated Perylene Bisimides: New Materials for Organic Field Effect Transistors. ACS Applied Electronic Materials, $2019,1,1378$ - $1386.$	2.0	31
15	Synthesis and self-assembly of aroylhydrazone based polycatenars: A structure-property correlation. Journal of Molecular Liquids, 2019, 284, 282-290.	2.3	18
16	A sensitive and selective sensor for picric acid detection with a fluorescence switching response. New Journal of Chemistry, 2018, 42, 5382-5394.	1.4	46
17	Substituted Aroylhydrazone Based Polycatenars: Tuning of Liquid Crystalline Selfâ€Assembly. ChemistrySelect, 2018, 3, 4027-4037.	0.7	7
18	A Peryleneâ€Triazineâ€Based Starâ€Shaped Green Light Emitter for Organic Light Emitting Diodes. European Journal of Organic Chemistry, 2018, 2018, 1608-1613.	1.2	30

#	Article	IF	CITATIONS
19	Columnar self-assembly of luminescent bent-shaped hexacatenars with a central pyridine core connected with substituted 1,3,4-oxadiazole and thiadiazoles. New Journal of Chemistry, 2018, 42, 3781-3798.	1.4	20
20	Room temperature columnar liquid crystalline self-assembly of acidochromic, luminescent, star-shaped molecules with cyanovinylene chromophores. Journal of Materials Chemistry C, 2018, 6, 1844-1852.	2.7	21
21	Columnar Selfâ€Assembly of Electronâ€Deficient Dendronized <i>Bay</i> â€Annulated Perylene Bisimides. Chemistry - A European Journal, 2018, 24, 3566-3575.	1.7	42
22	Microwave-Assisted Method for the Synthesis of Perylene Ester Imides as a Gateway Toward Unsymmetrical Perylene Bisimides. Journal of Organic Chemistry, 2018, 83, 6290-6300.	1.7	16
23	First Example of White Organic Electroluminescence Utilizing Perylene Ester Imides. ChemistrySelect, 2018, 3, 5123-5129.	0.7	14
24	Giant enhancement and facile tuning of photoluminescence in a soft anisotropic magneto-gel. Nanoscale, 2018, 10, 15686-15695.	2.8	11
25	Electroluminescent room temperature columnar liquid crystals based on bay-annulated perylene tetraesters. Journal of Materials Chemistry C, 2017, 5, 1767-1781.	2.7	42
26	Contrasting effects of heterocycle substitution and branched tails in the arms of star-shaped molecules. New Journal of Chemistry, 2017, 41, 4680-4688.	1.4	28
27	Nonsymmetrical cholesterol dimers constituting regioisomeric oxadiazole and thiadiazole cores: an investigation of the structure–property correlation. New Journal of Chemistry, 2017, 41, 879-888.	1.4	18
28	Tuning the self-assembly and photophysical properties of bi-1,3,4-thiadiazole derivatives through electron donor–acceptor interactions and their application in OLEDs. Journal of Materials Chemistry C, 2017, 5, 9345-9358.	2.7	44
29	The effect of regioisomerism on the mesomorphic and photophysical behavior of oxadiazole-based tris(N-salicylideneaniline)s: synthesis and characterization. New Journal of Chemistry, 2017, 41, 9908-9917.	1.4	18
30	Star-shaped π-gelators based on oxadiazole and thiadiazoles: a structure–property correlation. Molecular Systems Design and Engineering, 2017, 2, 478-489.	1.7	15
31	Bayâ€Annulated Perylene Tetraesters: A New Class of Discotic Liquid Crystals. ChemPhysChem, 2016, 17, 859-872.	1.0	30
32	Star-shaped fluorescent liquid crystals derived from s-triazine and 1,3,4-oxadiazole moieties. Journal of Materials Chemistry C, 2016, 4, 6117-6130.	2.7	51
33	Photoluminescent discotic liquid crystals derived from tris(N -salicylideneaniline) and stilbene conjugates: Structure–property correlations. Dyes and Pigments, 2016, 132, 291-305.	2.0	29
34	Photoisomerization behavior of photochromic amide-based azobenzene dyes exhibiting H-bonding effect: Synthesis and characterization. Korean Journal of Chemical Engineering, 2016, 33, 1480-1488.	1.2	4
35	Multifunctional hexacatenar mesogen exhibiting supergelation, AIEE and its ability as a potential volatile acid sensor. Journal of Materials Chemistry C, 2016, 4, 9669-9673.	2.7	45
36	Hexacatenars Exhibiting π-π Driven Supergelation, Aggregation Induced Blue Light Emission and Thermochromism. ChemistrySelect, 2016, 1, 5107-5120.	0.7	16

#	Article	IF	Citations
37	Liquid-Crystalline Star-Shaped Supergelator Exhibiting Aggregation-Induced Blue Light Emission. Langmuir, 2016, 32, 9301-9312.	1.6	22
38	Effect of Atomicâ€Scale Differences on the Selfâ€Assembly of Thiopheneâ€based Polycatenars in Liquid Crystalline and Organogel States. Chemistry - A European Journal, 2016, 22, 17843-17856.	1.7	23
39	Aromatic π–π driven supergelation, aggregation induced emission and columnar self-assembly of star-shaped 1,2,4-oxadiazole derivatives. Journal of Materials Chemistry C, 2016, 4, 6546-6561.	2.7	56
40	Fast Photoluminescence Switching in the Nematic Phase of Calamitic–Discotic Composites. Advanced Optical Materials, 2015, 3, 1116-1124.	3.6	9
41	Columnar self-assembly of star-shaped luminescent oxadiazole and thiadiazole derivatives. Journal of Materials Chemistry C, 2015, 3, 2940-2952.	2.7	79
42	Effect of regioisomerism on the self-assembly and photophysical behavior of 1,3,4-thiadiazole-based polycatenars. Journal of Materials Chemistry C, 2015, 3, 8166-8182.	2.7	40
43	Perylo[1,12- <i>b</i> , <i>c</i> , <i>d</i>] Thiophene Tetraesters: A New Class of Luminescent Columnar Liquid Crystals. Langmuir, 2015, 31, 8092-8100.	1.6	46
44	Self-assembly of luminescent N-annulated perylene tetraesters into fluid columnar phases. Soft Matter, 2015, 11, 3629-3636.	1.2	44
45	Non-symmetric dimers comprising chalcone and cholesterol entities: an investigation on structure–property correlations. New Journal of Chemistry, 2014, 38, 4235-4248.	1.4	35
46	Reversible metallisation of soft UV patterned substrates. Journal of Materials Chemistry C, 2014, 2, 5916-5923.	2.7	4
47	Self-Assembly of Hekates-Tris(<i>N</i> -salicylideneaniline)s into Columnar Structures: Synthesis and Characterization. Journal of Organic Chemistry, 2013, 78, 527-544.	1.7	69
48	Synthesis of nitrilotriacetic acid terminated tethers for the binding of His-tagged proteins to lipid bilayers and to gold. Tetrahedron, 2011, 67, 6246-6251.	1.0	0
49	Guestâ€Responsive Covalent Frameworks by the Crossâ€Linking of Liquidâ€Crystalline Salts: Tuning of Lattice Flexibility by the Design of Polymerizable Units. Chemistry - A European Journal, 2011, 17, 14752-14762.	1.7	24
50	Cholesterol-based anchors and tethers for phospholipid bilayers and for model biological membranes. Soft Matter, 2010, 6, 6036.	1.2	39
51	A Selfâ€assembly Route for Double Bilayer Lipid Membrane Formation. ChemPhysChem, 2010, 11, 569-574.	1.0	21
52	Tunable Chiral Reaction Media Based on Two-Component Liquid Crystals: Regio-, Diastereo-, and Enantiocontrolled Photodimerization of Anthracenecarboxylic Acids. Journal of the American Chemical Society, 2010, 132, 17435-17446.	6.6	38
53	Controlling Liquid Crystal Alignment Using Photocleavable Cyanobiphenyl Self-Assembled Monolayers. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3686-3692.	4.0	29
54	A Cholesterolâ€Based Tether for Creating Photopatterned Lipid Membrane Arrays on both a Silica and Gold Surface. Chemistry - A European Journal, 2009, 15, 6363-6370.	1.7	19

#	Article	IF	CITATIONS
55	Improved Photoreaction Yields for Soft Ultraviolet Photolithography in Organothiol Self-Assembled Monolayers. Journal of Physical Chemistry C, 2009, 113, 21642-21647.	1.5	26
56	Luminescent, Liquid Crystalline Tris($\langle i \rangle N \langle i \rangle$ -salicylideneaniline)s: Synthesis and Characterization. Journal of Organic Chemistry, 2009, 74, 3168-3171.	1.7	85
57	The first examples of discotic radicals: columnar mesomorphism in spin-carrying triphenylenes. Journal of Materials Chemistry, 2008, 18, 3433.	6.7	34
58	Frustrated Liquid Crystals:Â Synthesis and Mesomorphic Behavior of Unsymmetrical Dimers Possessing Chiral and Fluorescent Entities. Chemistry of Materials, 2007, 19, 2463-2472.	3.2	77
59	A New Class of Discotic Mesogens Derived from Tris($\langle i \rangle N \langle i \rangle$ -salicylideneaniline)s Existing in $\langle i \rangle C \langle i \rangle \langle sub \rangle \langle$	1.7	74
60	The first examples of optically active tris(N-salicylideneaniline)s: manifestation of chirality from molecules to fluid columnar phases. Journal of Materials Chemistry, 2007, 17, 4521.	6.7	41
61	Monodispersive Linear Supermolecules Stabilizing Unusual Fluid Layered Phases. Organic Letters, 2007, 9, 2641-2644.	2.4	33
62	Liquid Crystal Abrikosov Flux Phase:Â The Exclusive Wide Thermal Range Enantiotropic Occurrence. Chemistry of Materials, 2006, 18, 1076-1078.	3.2	41
63	Glass-forming organic radical compounds with cholesterol and benzylideneamine cores. Tetrahedron Letters, 2005, 46, 6701-6703.	0.7	7

Self-AssemblyÂofÂC3hÂandÂCsÂSymmetric 64 Keto-enamineÂFormsÂofÂTris(N-salicyl-ideneanilines)ÂintoÂColumnarÂPhases:ÂAÂNewÂFamilyÂofÂDiscoticÂLiquidÂGrystals.60 Journal of the American Chemical Society, 2004, 126, 6506-6507.