
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9552056/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Investigation of antiradical activity of plant material by thin-layer chromatography with image processing. Food Chemistry, 2012, 132, 549-553.                                                                             | 4.2 | 96        |
| 2  | Biological Activity of Berberine—A Summary Update. Toxins, 2020, 12, 713.                                                                                                                                                   | 1.5 | 87        |
| 3  | Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT - Food Science and Technology, 2014, 59, 689-694.                                                 | 2.5 | 82        |
| 4  | Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLoS<br>ONE, 2015, 10, e0140355.                                                                                                | 1.1 | 79        |
| 5  | Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. Journal of the Science of Food and Agriculture, 2014, 94, 560-567.                                                                | 1.7 | 71        |
| 6  | The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth. European Journal of Nutrition, 2018, 57, 1511-1521.                           | 1.8 | 70        |
| 7  | Polyphenols of Rosa L. Leaves Extracts and their Radical Scavenging Activity. Zeitschrift Fur<br>Naturforschung - Section C Journal of Biosciences, 2007, 62, 32-38.                                                        | 0.6 | 60        |
| 8  | Glutenâ€Free Precooked Riceâ€Yellow Pea Pasta: Effect of Extrusionâ€Cooking Conditions on Phenolic Acids<br>Composition, Selected Properties and Microstructure. Journal of Food Science, 2016, 81, C1070-9.                | 1.5 | 52        |
| 9  | Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chemistry, 2017, 225, 138-145.                                                 | 4.2 | 48        |
| 10 | New biological activity of the polysaccharide fraction from Cantharellus cibarius and its structural characterization. Food Chemistry, 2018, 268, 355-361.                                                                  | 4.2 | 47        |
| 11 | Extraction methods for the determination of phenolic compounds from Equisetum arvense L. herb.<br>Industrial Crops and Products, 2014, 61, 377-381.                                                                         | 2.5 | 46        |
| 12 | A New Method for the Isolation of Ergosterol and Peroxyergosterol as Active Compounds of<br>Hygrophoropsis aurantiaca and in Vitro Antiproliferative Activity of Isolated Ergosterol Peroxide.<br>Molecules, 2016, 21, 946. | 1.7 | 44        |
| 13 | Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi<br>flos. Industrial Crops and Products, 2013, 44, 373-377.                                                          | 2.5 | 43        |
| 14 | Influence of sprouting and elicitation on phenolic acids profile and antioxidant activity of wheat seedlings. Journal of Cereal Science, 2016, 70, 221-228.                                                                 | 1.8 | 41        |
| 15 | Antioxidative and cytotoxic potential of some Chenopodium L. species growing in Poland. Saudi<br>Journal of Biological Sciences, 2016, 23, 15-23.                                                                           | 1.8 | 41        |
| 16 | LC-ESI-MS/MS Identification of Biologically Active Phenolic Compounds in Mistletoe Berry Extracts from Different Host Trees. Molecules, 2017, 22, 624.                                                                      | 1.7 | 36        |
| 17 | Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from<br>Viscum album subsp. abietis. Chemical Papers, 2014, 68, .                                                            | 1.0 | 32        |
| 18 | Chemical Composition of Hips Essential Oils of Some Rosa L. Species December 13, 2004. Zeitschrift Fur<br>Naturforschung - Section C Journal of Biosciences, 2005, 60, 369-378.                                             | 0.6 | 30        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Polysaccharide-Rich Fractions from Rosa rugosa Thunb.—Composition and Chemopreventive<br>Potential. Molecules, 2019, 24, 1354.                                                                                                                         | 1.7 | 28        |
| 20 | A new look at edible and medicinal mushrooms as a source of ergosterol and ergosterol peroxide -<br>UHPLC-MS/MS analysis. Food Chemistry, 2022, 369, 130927.                                                                                           | 4.2 | 28        |
| 21 | Impact of Harvest Conditions and Host Tree Species on Chemical Composition and Antioxidant Activity of Extracts from Viscum album L. Molecules, 2021, 26, 3741.                                                                                        | 1.7 | 27        |
| 22 | Biological activity and composition of teas and tinctures prepared from Rosa rugosa Thunb Open Life<br>Sciences, 2012, 7, 172-182.                                                                                                                     | 0.6 | 26        |
| 23 | Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale.<br>Journal of Analytical Methods in Chemistry, 2018, 2018, 1-7.                                                                                           | 0.7 | 25        |
| 24 | Characterization of Free and Bound Phenolic Acids and Flavonoid Aglycones in Rosa rugosa Thunb.<br>Leaves and Achenes Using LC–ESI–MS/MS–MRM Methods. Molecules, 2020, 25, 1804.                                                                       | 1.7 | 25        |
| 25 | Comparison of the Essential Oil Composition of Selected Impatiens Species and Its Antioxidant Activities. Molecules, 2016, 21, 1162.                                                                                                                   | 1.7 | 24        |
| 26 | Influence of Drying Temperature on Phenolic Acids Composition and Antioxidant Activity of Sprouts and Leaves of White and Red Quinoa. Journal of Chemistry, 2019, 2019, 1-8.                                                                           | 0.9 | 22        |
| 27 | Separation and Quantification of Tiliroside from Plant Extracts by SPE/RP-HPLC. Pharmaceutical Biology, 2003, 41, 627-630.                                                                                                                             | 1.3 | 21        |
| 28 | Influence of Accelerated Solvent Extraction Conditions on the LC-ESI-MS/MS Polyphenolic Profile,<br>Triterpenoid Content, and Antioxidant and Anti-lipoxygenase Activity of Rhododendron luteum Sweet<br>Leaves. Antioxidants, 2020, 9, 822.           | 2.2 | 21        |
| 29 | Plant Polyphenols as Chemopreventive Agents. , 2014, , 1289-1307.                                                                                                                                                                                      |     | 20        |
| 30 | Berberine, a Herbal Metabolite in the Metabolic Syndrome: The Risk Factors, Course, and Consequences of the Disease. Molecules, 2022, 27, 1351.                                                                                                        | 1.7 | 20        |
| 31 | Influence of different extraction procedures on the antiradical activity and phenolic profile of Rosa<br>rugosa petals. Acta Poloniae Pharmaceutica, 2012, 69, 501-7.                                                                                  | 0.3 | 19        |
| 32 | Evaluation of rose roots, a post-harvest plantation residue as a source of phytochemicals with<br>radical scavenging, cytotoxic, and antimicrobial activity. Industrial Crops and Products, 2015, 69,<br>129-136.                                      | 2.5 | 17        |
| 33 | Multidirectional characterisation of chemical composition and health-promoting potential of <i>Rosa rugosa</i> hips. Natural Product Research, 2017, 31, 667-671.                                                                                      | 1.0 | 17        |
| 34 | Polyphenol Composition and Antioxidant Potential of Instant Gruels Enriched with Lycium barbarum<br>L. Fruit. Molecules, 2020, 25, 4538.                                                                                                               | 1.7 | 17        |
| 35 | Promising Potential of Crude Polysaccharides from Sparassis crispa against Colon Cancer: An In Vitro<br>Study. Nutrients, 2021, 13, 161.                                                                                                               | 1.7 | 17        |
| 36 | Hyaluronidase, acetylcholinesterase inhibiting potential, antioxidant activity, and LC-ESI-MS/MS<br>analysis of polyphenolics of rose ( <i>Rosa rugosa</i> Thunb.) teas and tinctures. International<br>Journal of Food Properties, 2017, 20, S16-S25. | 1.3 | 16        |

| #  | Article                                                                                                                                                                                                                                     | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | LC-ESI-MS/MS profiling of phenolics from Eleutherococcus spp. inflorescences, structure-activity relationship as antioxidants, inhibitors of hyaluronidase and acetylcholinesterase. Saudi Pharmaceutical Journal, 2017, 25, 734-743.       | 1.2 | 16        |
| 38 | Uncaria tomentosa Leaves Decoction Modulates Differently ROS Production in Cancer and Normal Cells, and Effects Cisplatin Cytotoxicity. Molecules, 2017, 22, 620.                                                                           | 1.7 | 16        |
| 39 | TLC fingerprinting analysis of the European dog rose. Journal of Planar Chromatography - Modern<br>TLC, 2007, 20, 43-48.                                                                                                                    | 0.6 | 15        |
| 40 | Phytochemical Content and Pharma-Nutrition Study on <i>Eleutherococcus senticosus</i> Fruits Intractum. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.                                                                        | 1.9 | 15        |
| 41 | LC-ESI-MS/MS-MRM Profiling of Polyphenols and Antioxidant Activity Evaluation of Junipers of Different Origin. Applied Sciences (Switzerland), 2020, 10, 8921.                                                                              | 1.3 | 15        |
| 42 | Junipers of Various Origins as Potential Sources of the Anticancer Drug Precursor Podophyllotoxin.<br>Molecules, 2021, 26, 5179.                                                                                                            | 1.7 | 15        |
| 43 | Antioxidant, Anti-Inflammatory, and Anti-Diabetic Activity of Phenolic Acids Fractions Obtained from<br>Aerva lanata (L.) Juss Molecules, 2021, 26, 3486.                                                                                   | 1.7 | 14        |
| 44 | A solid-phase extraction-thin-layer chromatographic-fiber optical scanning densitometric method for<br>determination of flavonol aglycones in extracts of rose leaves. Journal of Planar Chromatography -<br>Modern TLC, 2005, 18, 437-442. | 0.6 | 13        |
| 45 | Extruded corn gruels containing linden flowers: quantitation of phenolic compounds and selected quality characteristics. Open Chemistry, 2015, 13, .                                                                                        | 1.0 | 13        |
| 46 | LC-ESI-MS/MS Characterization of Concentrated Polyphenolic Fractions from Rhododendron luteum and Their Anti-Inflammatory and Antioxidant Activities. Molecules, 2022, 27, 827.                                                             | 1.7 | 12        |
| 47 | Comparative study of phenolic acids in pseudofruits of some species of roses. Acta Poloniae<br>Pharmaceutica, 2006, 63, 281-8.                                                                                                              | 0.3 | 12        |
| 48 | Two-dimensional thin-layer chromatographic determination of phenolic antioxidants<br>fromEupatorium cannabinumextracts on cyano-bonded polar stationary phases. Journal of Planar<br>Chromatography - Modern TLC, 2012, 25, 394-402.        | 0.6 | 11        |
| 49 | Influence of Production Parameters on the Content of Polyphenolic Compounds in Extruded Porridge<br>Enriched with Chokeberry Fruit (Aronia melanocarpa (Michx.) Elliott). Open Chemistry, 2019, 17, 166-176.                                | 1.0 | 11        |
| 50 | Phenolic acids prolife and antioxidant properties of bread enriched with sprouted wheat flour.<br>Journal of Food Biochemistry, 2017, 41, e12386.                                                                                           | 1.2 | 10        |
| 51 | LC-ESI-MS/MS profiling of phenolics in the leaves of <i>Eleutherococcus senticosus</i> cultivated in the West Europe and anti-hyaluronidase and anti-acetylcholinestarase activities. Natural Product Research, 2018, 32, 448-452.          | 1.0 | 10        |
| 52 | <i>Eleutherococcus</i> Species Cultivated in Europe: A New Source of Compounds with<br>Antiacetylcholinesterase, Antihyaluronidase, Anti-DPPH, and Cytotoxic Activities. Oxidative Medicine<br>and Cellular Longevity, 2019, 2019, 1-10.    | 1.9 | 10        |
| 53 | Determination of ellagic acid in pseudofruits of some species of roses. Acta Poloniae Pharmaceutica, 2006, 63, 289-92.                                                                                                                      | 0.3 | 10        |
| 54 | Impact of xanthan gum addition on phenolic acids composition and selected properties of new gluten-free maize-field bean pasta. Open Chemistry, 2019, 17, 587-598.                                                                          | 1.0 | 9         |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of Supercritical Carbon Dioxide Extraction (SC-CO2) on the content of tiliroside in the extracts from Tilia L. flowers. Open Chemistry, 2019, 17, 302-312.                                                                                | 1.0 | 9         |
| 56 | Two-dimensional Thin Layer Chromatographic Separation of Phenolic Compounds from Eupatorium cannabinum Extracts and their Antioxidant Activity. Medicinal Chemistry, 2012, 8, 118-131.                                                            | 0.7 | 8         |
| 57 | Optimization of Extraction Conditions for Determination of Tiliroside in <i>Tilia</i> L. Flowers Using an LC-ESI-MS/MS Method. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-9.                                                       | 0.7 | 8         |
| 58 | The Impact of Formulation on the Content of Phenolic Compounds in Snacks Enriched with<br>Dracocephalum moldavica L. Seeds: Introduction to Receiving a New Functional Food Product.<br>Molecules, 2021, 26, 1245.                                | 1.7 | 8         |
| 59 | The essential oil composition of selected Hemerocallis cultivars and their biological activity. Open Chemistry, 2019, 17, 1412-1422.                                                                                                              | 1.0 | 8         |
| 60 | HPTLC-densitometry determination of triterpenic acids in Origanum vulgare, Rosmarinus officinalis and Syzygium aromaticum. Acta Poloniae Pharmaceutica, 2013, 70, 413-8.                                                                          | 0.3 | 7         |
| 61 | Synthesis and Antioxidant Activity of New Norcantharidin Analogs. Chemistry and Biodiversity, 2019, 16, e1800673.                                                                                                                                 | 1.0 | 6         |
| 62 | LC-ESI-MS/MS Polyphenolic Profile and In Vitro Study of Cosmetic Potential of Aerva lanata (L.) Juss.<br>Herb Extracts. Molecules, 2022, 27, 1259.                                                                                                | 1.7 | 6         |
| 63 | Antioxidant Evaluation of Some Semicarbazide, 1,2,4-Triazolone and Pyrazolone Derivatives. Letters in<br>Drug Design and Discovery, 2011, 8, 1004-1008.                                                                                           | 0.4 | 5         |
| 64 | Phytoconstituents and Nutritional Properties of the Fruits ofEleutherococcus<br>divaricatusandEleutherococcus sessiliflorus: A Study of Non-European Species Cultivated in Poland.<br>Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-7. | 1.9 | 5         |
| 65 | Biological activity of new flavonoid from Hieracium pilosella L Open Life Sciences, 2011, 6, 397-404.                                                                                                                                             | 0.6 | 4         |
| 66 | Puffed cereals with added chamomile – quantitative analysis of polyphenols and optimization of their extraction method. Annals of Agricultural and Environmental Medicine, 2017, 24, 222-228.                                                     | 0.5 | 4         |
| 67 | Mushroom Polyphenols as Chemopreventive Agents. , 2018, , 137-150.                                                                                                                                                                                |     | 4         |
| 68 | Application of densitometry to the determination of catechin in rose-hip extracts. Journal of Planar Chromatography - Modern TLC, 2005, 18, 217-220.                                                                                              | 0.6 | 4         |
| 69 | Phenolic acids in leaves of Secamone afzelii (Rhoem.) Schult. (Asclepiadaceae). Acta Societatis<br>Botanicorum Poloniae, 2014, 67, 243-245.                                                                                                       | 0.8 | 4         |
| 70 | Barberry (Berberis vulgaris)—Traditional and Contemporary Use. Sustainable Development and<br>Biodiversity, 2021, , 797-825.                                                                                                                      | 1.4 | 1         |
| 71 | Phenolic Acid LC/MS Profile of Chenopodium rubrum and Evaluation of Cytotoxic Activity. Natural Product Communications, 2018, 13, 1934578X1801300.                                                                                                | 0.2 | 0         |