Cathrina H Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9551919/publications.pdf

Version: 2024-02-01

29 papers 3,286 citations

430843 18 h-index 26 g-index

29 all docs 29 docs citations

29 times ranked 3010 citing authors

#	Article	IF	CITATIONS
1	Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends in Food Science and Technology, 2022, 120, 254-264.	15.1	28
2	Effect of high-amylose <i>starch branching enzyme II </i> wheat mutants on starch digestibility in bread, product quality, postprandial satiety and glycaemic response. Food and Function, 2022, 13, 1617-1627.	4.6	12
3	A Simple and Effective Method for Observing Starch in Whole Plant Cells and in Raw and Processed Food Ingredients. Starch/Staerke, 2021, 73, 2000056.	2.1	1
4	Structure–function studies of chickpea and durum wheat uncover mechanisms by which cell wall properties influence starch bioaccessibility. Nature Food, 2021, 2, 118-126.	14.0	37
5	Comparison of the behavior of fungal and plant cell wall during gastrointestinal digestion and resulting health effects: A review. Trends in Food Science and Technology, 2021, 110, 132-141.	15.1	18
6	The impact of replacing wheat flour with cellular legume powder on starch bioaccessibility, glycaemic response and bread roll quality: A double-blind randomised controlled trial in healthy participants. Food Hydrocolloids, 2021, 114, 106565.	10.7	33
7	α-Amylase action on starch in chickpea flour following hydrothermal processing and different drying, cooling and storage conditions. Carbohydrate Polymers, 2021, 259, 117738.	10.2	16
8	\hat{l}^2 -glucan release from fungal and plant cell walls after simulated gastrointestinal digestion. Journal of Functional Foods, 2021, 83, 104543.	3 . 4	10
9	Effect of semolina pudding prepared from starch branching enzyme IIa and b mutant wheat on glycaemic response in vitro and in vivo: a randomised controlled pilot study. Food and Function, 2020, 11, 617-627.	4.6	15
10	A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans. Nature Food, 2020, $1,693-704$.	14.0	37
11	The interaction of α-amylase with mycoprotein: Diffusion through the fungal cell wall, enzyme entrapment, and potential physiological implications. Food Hydrocolloids, 2020, 108, 106018.	10.7	14
12	Effect of cooking, 24 h cold storage, microwave reheating, and particle size on <i>in vitro</i> starch digestibility of dry and fresh pasta. Food and Function, 2020, 11, 6265-6272.	4.6	6
13	Incorporation of a novel leguminous ingredient into savoury biscuits reduces their starch digestibility: Implications for lowering the Glycaemic Index of cereal products. Food Chemistry: X, 2020, 5, 100078.	4.3	23
14	Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods, 2020, 9, 201.	4.3	82
15	Chemical, physical and glycaemic characterisation of PulseON®: A novel legume cell-powder ingredient for use in the design of functional foods. Journal of Functional Foods, 2020, 68, 103918.	3.4	36
16	Mycoprotein ingredient structure reduces lipolysis and binds bile salts during simulated gastrointestinal digestion. Food and Function, 2020, 11, 10896-10906.	4.6	26
17	A single-enzyme system for starch digestibility screening and its relevance to understanding and predicting the glycaemic index of food products. Food and Function, 2019, 10, 4751-4760.	4.6	48
18	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	12.0	1,873

#	Article	IF	CITATIONS
19	A comparison of the kinetics of in vitro starch digestion in smooth and wrinkled peas by porcine pancreatic alpha-amylase. Food Chemistry, 2018, 244, 386-393.	8.2	38
20	Structural and enzyme kinetic studies of retrograded starch: Inhibition of \hat{l}_{\pm} -amylase and consequences for intestinal digestion of starch. Carbohydrate Polymers, 2017, 164, 154-161.	10.2	104
21	In vitro and in vivo modeling of lipid bioaccessibility and digestion from almond muffins: The importance of the cell-wall barrier mechanism. Journal of Functional Foods, 2017, 37, 263-271.	3.4	33
22	Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 2016, 116, 816-833.	2.3	255
23	The role of sugars and sweeteners in food, diet and health: Alternatives for the future. Trends in Food Science and Technology, 2016, 56, 158-166.	15.1	109
24	Infrared microspectroscopic imaging of plant tissues: spectral visualization of <i>Triticum aestivum</i> kernel and Arabidopsis leaf microstructure. Plant Journal, 2015, 84, 634-646.	5.7	18
25	A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility. Food and Function, 2015, 6, 3634-3641.	4.6	87
26	Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. American Journal of Clinical Nutrition, 2015, 102, 791-800.	4.7	134
27	A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food and Function, 2014, 5, 2751-2758.	4.6	193
28	The structure and chemical composition of plant tissues revealed by high resolution attenuated total internal reflectance imaging CFW Plexus, 2013, , .	0.0	0
29	How analysis of data from alphaâ€nmylase catalysed starch digestibility performed in vitro contributes to an understanding of rates and extent of digestion starchy foods in vivo. FASEB Journal, 2012, 26, 638.9.	0.5	0