
Deborah C Holt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9551523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular diagnosis of scabies using a novel probe-based polymerase chain reaction assay targeting high-copy number repetitive sequences in the Sarcoptes scabiei genome. PLoS Neglected Tropical Diseases, 2021, 15, e0009149.	3.0	7
2	Clinical and Molecular Epidemiology of an Emerging Panton-Valentine Leukocidin-Positive ST5 Methicillin-Resistant Staphylococcus aureus Clone in Northern Australia. MSphere, 2021, 6, .	2.9	11
3	Longitudinal whole-genome based comparison of carriage and infection associated Staphylococcus aureus in northern Australian dialysis clinics. PLoS ONE, 2021, 16, e0245790.	2.5	3
4	First Description of the Composition and the Functional Capabilities of the Skin Microbial Community Accompanying Severe Scabies Infestation in Humans. Microorganisms, 2021, 9, 907.	3.6	2
5	High-quality nuclear genome for Sarcoptes scabiei—A critical resource for a neglected parasite. PLoS Neglected Tropical Diseases, 2020, 14, e0008720.	3.0	25
6	Concerns for efficacy of a 30-valent M-protein-based Streptococcus pyogenes vaccine in regions with high rates of rheumatic heart disease. PLoS Neglected Tropical Diseases, 2019, 13, e0007511.	3.0	29
7	Identification and Discrimination of Chlamydia trachomatis Ocular and Urogenital Strains and Major Phylogenetic Lineages by CtGEM Typing, A Double-Locus Genotyping Method. Methods in Molecular Biology, 2019, 2042, 87-122.	0.9	1
8	Potential for Molecular Testing for Group A Streptococcus to Improve Diagnosis and Management in a High-Risk Population: A Prospective Study. Open Forum Infectious Diseases, 2019, 6, ofz097.	0.9	28
9	A cluster of acute rheumatic fever cases among Aboriginal Australians in a remote community with high baseline incidence. Australian and New Zealand Journal of Public Health, 2019, 43, 288-293.	1.8	19
10	Investigation of trimethoprim/sulfamethoxazole resistance in an emerging sequence type 5 methicillin-resistant Staphylococcus aureus clone reveals discrepant resistance reporting. Clinical Microbiology and Infection, 2018, 24, 1027-1029.	6.0	15
11	Contaminated fingers: a potential cause of Chlamydia trachomatis-positive urine specimens. Sexually Transmitted Infections, 2018, 94, 32-36.	1.9	5
12	CtGEM typing: Discrimination of Chlamydia trachomatis ocular and urogenital strains and major evolutionary lineages by high resolution melting analysis of two amplified DNA fragments. PLoS ONE, 2018, 13, e0195454.	2.5	9
13	Global Scale Dissemination of ST93: A Divergent Staphylococcus aureus Epidemic Lineage That Has Recently Emerged From Remote Northern Australia. Frontiers in Microbiology, 2018, 9, 1453.	3.5	29
14	Phylogenetic relationships, stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei. Parasites and Vectors, 2018, 11, 301.	2.5	9
15	High burden of complicated skin and soft tissue infections in the Indigenous population of Central Australia due to dominant Panton Valentine leucocidin clones ST93-MRSA and CC121-MSSA. BMC Infectious Diseases, 2017, 17, 405.	2.9	27
16	Soil-Transmitted Helminths in Children in a Remote Aboriginal Community in the Northern Territory: Hookworm is Rare but Strongyloides stercoralis and Trichuris trichiura Persist. Tropical Medicine and Infectious Disease, 2017, 2, 51.	2.3	15
17	Strongyloides seroprevalence before and after an ivermectin mass drug administration in a remote Australian Aboriginal community. PLoS Neglected Tropical Diseases, 2017, 11, e0005607.	3.0	51
18	Staphylococcus aureus Prostatic abscess: a clinical case report and a review of the literature. BMC Infectious Diseases, 2017, 17, 509.	2.9	29

DEBORAH C HOLT

#	Article	IF	CITATIONS
19	Primary health clinic toilet/bathroom surface swab sampling can indicate community profile of sexually transmitted infections. PeerJ, 2017, 5, e3487.	2.0	1
20	The Importance of Scabies Coinfection in the Treatment Considerations for Impetigo. Pediatric Infectious Disease Journal, 2016, 35, 374-378.	2.0	23
21	<i>Chlamydia trachomatis</i> genotypes in a cross-sectional study of urogenital samples from remote Northern and Central Australia. BMJ Open, 2016, 6, e009624.	1.9	18
22	Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var. suis. GigaScience, 2016, 5, 23.	6.4	28
23	Whole genome sequencing reveals extensive community-level transmission of group A <i>Streptococcus</i> in remote communities. Epidemiology and Infection, 2016, 144, 1991-1998.	2.1	19
24	Mitochondrial Genome Sequence of the Scabies Mite Provides Insight into the Genetic Diversity of Individual Scabies Infections. PLoS Neglected Tropical Diseases, 2016, 10, e0004384.	3.0	30
25	Whole genome sequencing to investigate a putative outbreak of the virulent community-associated methicillin-resistant Staphylococcus aureus ST93 clone in a remote Indigenous community. Microbial Genomics, 2016, 2, e000098.	2.0	1
26	Toward Making Inroads in Reducing the Disparity of Lung Health in Australian Indigenous and New Zealand MÃ,,Âori Children. Frontiers in Pediatrics, 2015, 3, 9.	1.9	33
27	Impact of an Ivermectin Mass Drug Administration on Scabies Prevalence in a Remote Australian Aboriginal Community. PLoS Neglected Tropical Diseases, 2015, 9, e0004151.	3.0	81
28	Prospective Study in a Porcine Model of Sarcoptes scabiei Indicates the Association of Th2 and Th17 Pathways with the Clinical Severity of Scabies. PLoS Neglected Tropical Diseases, 2015, 9, e0003498.	3.0	46
29	Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 15-22.	1.7	201
30	Reduced <i>In Vitro</i> Activity of Ceftaroline by Etest among Clonal Complex 239 Methicillin-Resistant Staphylococcus aureus Clinical Strains from Australia. Antimicrobial Agents and Chemotherapy, 2015, 59, 7837-7841.	3.2	15
31	Intestinal parasites of children and adults in a remote Aboriginal community of the Northern Territory, Australia, 1994–1996. Western Pacific Surveillance and Response Journal: WPSAR, 2015, 6, 44-51.	0.6	23
32	Intestinal parasites of children and adults in a remote Aboriginal community of the Northern Territory, Australia, 1994-1996. Western Pacific Surveillance and Response Journal: WPSAR, 2015, 6, 44-51.	0.6	15
33	Distribution of Giardia duodenalis Assemblages A and B among Children Living in a Remote Indigenous Community of the Northern Territory, Australia. PLoS ONE, 2014, 9, e112058.	2.5	22
34	Use of dried blood spots to define antibody response to the Strongyloides stercoralis recombinant antigen NIE. Acta Tropica, 2014, 138, 78-82.	2.0	38
35	Crusted scabies is associated with increased <scp>IL</scp> â€17 secretion by skin T cells. Parasite Immunology, 2014, 36, 594-604.	1.5	32
36	Invasive Staphylococcus aureus Infections in Children in Tropical Northern Australia. Journal of the Pediatric Infectious Diseases Society, 2014, 3, 304-311.	1.3	22

DEBORAH C HOLT

#	Article	IF	CITATIONS
37	The clinical and molecular epidemiology of Staphylococcus aureus infections in Fiji. BMC Infectious Diseases, 2014, 14, 160.	2.9	49
38	DNA Concentration Can Specify DNA Melting Point in a High-Resolution Melting Analysis Master Mix. Clinical Chemistry, 2014, 60, 414-416.	3.2	6
39	Intestinal proteases of free-living and parasitic astigmatid mites. Cell and Tissue Research, 2013, 351, 339-352.	2.9	19
40	An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules. PLoS Neglected Tropical Diseases, 2013, 7, e2525.	3.0	26
41	Virulence of Endemic Nonpigmented Northern Australian Staphylococcus aureus Clone (Clonal) Tj ETQq1 1 0.7 208, 520-527.	′84314 rgB 4.0	T /Overlock 1 66
42	Novel insights into an old disease. Current Opinion in Infectious Diseases, 2013, 26, 110-115.	3.1	18
43	Antibody Responses to Sarcoptes scabiei Apolipoprotein in a Porcine Model: Relevance to Immunodiagnosis of Recent Infection. PLoS ONE, 2013, 8, e65354.	2.5	27
44	Scabies. Advances in Parasitology, 2012, 79, 339-373.	3.2	27
45	Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus. Parasites and Vectors, 2012, 5, 3.	2.5	32
46	A diagnostic test for scabies: IgE specificity for a recombinant allergen of Sarcoptes scabiei. Diagnostic Microbiology and Infectious Disease, 2011, 71, 403-407.	1.8	52
47	A Very Early-Branching Staphylococcus aureus Lineage Lacking the Carotenoid Pigment Staphyloxanthin. Genome Biology and Evolution, 2011, 3, 881-895.	2.5	142
48	Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. International Journal for Parasitology, 2011, 41, 571-579.	3.1	102
49	Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity. PLoS Neglected Tropical Diseases, 2011, 5, e1331.	3.0	36
50	The Utility of High-Resolution Melting Analysis of SNP Nucleated PCR Amplicons—An MLST Based Staphylococcus aureus Typing Scheme. PLoS ONE, 2011, 6, e19749.	2.5	40
51	Parasitic diseases of remote Indigenous communities in Australia. International Journal for Parasitology, 2010, 40, 1119-1126.	3.1	41
52	Increased Allergic Immune Response to <i>Sarcoptes scabiei</i> Antigens in Crusted versus Ordinary Scabies. Vaccine Journal, 2010, 17, 1428-1438.	3.1	81
53	Clinical Correlates of Pantonâ€Valentine Leukocidin (PVL), PVL Isoforms, and Clonal Complex in the <i>Staphylococcus aureus</i> Population of Northern Australia. Journal of Infectious Diseases, 2010, 202, 760-769.	4.0	79
54	Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites. Parasites and Vectors, 2010, 3, 43.	2.5	73

DEBORAH C HOLT

#	Article	IF	CITATIONS
55	Rapid detection of H and R Panton–Valentine leukocidin isoforms in Staphylococcus aureus by high-resolution melting analysis. Diagnostic Microbiology and Infectious Disease, 2010, 67, 399-401.	1.8	12
56	Communityâ€Associated Strains of Methicillinâ€ResistantStaphylococcus aureusand Methicillin‧usceptibleS. aureusin Indigenous Northern Australia: Epidemiology and Outcomes. Journal of Infectious Diseases, 2009, 199, 1461-1470.	4.0	96
57	The Effect of Insecticide Synergists on the Response of Scabies Mites to Pyrethroid Acaricides. PLoS Neglected Tropical Diseases, 2009, 3, e354.	3.0	70
58	Longitudinal Evidence of Increasing In Vitro Tolerance of Scabies Mites to Ivermectin in Scabies-Endemic Communities. Archives of Dermatology, 2009, 145, 840-1.	1.4	79
59	Phylogenetically Distinct <i>Staphylococcus aureus</i> Lineage Prevalent among Indigenous Communities in Northern Australia. Journal of Clinical Microbiology, 2009, 47, 2295-2300.	3.9	67
60	High-resolution melting analysis of the spa locus reveals significant diversity within sequence type 93 methicillin-resistant Staphylococcus aureus from northern Australia. Clinical Microbiology and Infection, 2009, 15, 1126-1131.	6.0	25
61	CA-MRSA: emerging remotely. Microbiology Australia, 2009, 30, 185.	0.4	0
62	Highâ€resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites. Medical and Veterinary Entomology, 2008, 22, 82-88.	1.5	80
63	Scabies: molecular perspectives and therapeutic implications in the face of emerging drug resistance. Future Microbiology, 2008, 3, 57-66.	2.0	96
64	Global Implications of the Emergence of Communityâ€Associated Methicillinâ€Resistant <i>Staphylococcus aureus</i> in Indigenous Populations. Clinical Infectious Diseases, 2008, 46, 1871-1878.	5.8	66
65	Molecular characterisation of a pH-gated chloride channel from Sarcoptes scabiei. Invertebrate Neuroscience, 2007, 7, 149-156.	1.8	50
66	Scabies mite inactivated protease paralogues. International Congress Series, 2006, 1289, 85-88.	0.2	1
67	The chitinase allergens Der p 15 and Der p 18 from <i>Dermatophagoides pteronyssinus</i> . Clinical and Experimental Allergy, 2006, 36, 831-839.	2.9	55
68	Use of a Single-Nucleotide Polymorphism Genotyping System To Demonstrate the Unique Epidemiology of Methicillin-Resistant Staphylococcus aureus in Remote Aboriginal Communities. Journal of Clinical Microbiology, 2006, 44, 3720-3727.	3.9	113
69	Identification of ABC transporters inSarcoptes scabiei. Parasitology, 2006, 132, 883-892.	1.5	22
70	PCR-BASED ASSAY TO SURVEY FOR KNOCKDOWN RESISTANCE TO PYRETHROID ACARICIDES IN HUMAN SCABIES MITES (SARCOPTES SCABIEI VAR HOMINIS). American Journal of Tropical Medicine and Hygiene, 2006, 74, 649-657.	1.4	46
71	PCR-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var hominis). American Journal of Tropical Medicine and Hygiene, 2006, 74, 649-57.	1.4	16
72	Analysis of Sarcoptes scabiei finds no evidence of infection with Wolbachia. International Journal for Parasitology, 2005, 35, 131-135.	3.1	12

#	Article	IF	CITATIONS
73	IDENTIFICATION AND CHARACTERIZATION OF SARCOPTES SCABIEI AND DERMATOPHAGOIDES PTERONYSSINUS GLUTATHIONE S-TRANSFERASES: IMPLICATION AS A POTENTIAL MAJOR ALLERGEN IN CRUSTED SCABIES. American Journal of Tropical Medicine and Hygiene, 2005, 73, 977-984.	1.4	48
74	Identification and characterization of Sarcoptes scabiei and Dermatophagoides pteronyssinus glutathione S-transferases: implication as a potential major allergen in crusted scabies. American Journal of Tropical Medicine and Hygiene, 2005, 73, 977-84.	1.4	20
75	Scabies: New Future for a Neglected Disease. Advances in Parasitology, 2004, 57, 309-376.	3.2	138
76	A Multigene Family of Inactivated Cysteine Proteases in Sarcoptes scabiei. Journal of Investigative Dermatology, 2004, 123, 240-241.	0.7	54
77	Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. International Journal for Parasitology, 2004, 34, 839-849.	3.1	114
78	Mechanisms for a Novel Immune Evasion Strategy in the Scabies Mite Sarcoptes Scabiei: A Multigene Family of Inactivated Serine Proteases. Journal of Investigative Dermatology, 2003, 121, 1419-1424.	0.7	87
79	GENERATION AND CHARACTERIZATION OF CDNA CLONES FROM SARCOPTES SCABIEI VAR. HOMINIS FOR AN EXPRESSED SEQUENCE TAG LIBRARY: IDENTIFICATION OF HOMOLOGUES OF HOUSE DUST MITE ALLERGENS. American Journal of Tropical Medicine and Hygiene, 2003, 68, 61-64.	1.4	72
80	IDENTIFICATION OF A HOMOLOGUE OF A HOUSE DUST MITE ALLERGEN IN A cDNA LIBRARY FROM SARCOPTES SCABIEI VAR. HOMINIS AND EVALUATION OF ITS VACCINE POTENTIAL IN A RABBIT/S. SCABIEI VAR. CANIS MODEL. American Journal of Tropical Medicine and Hygiene, 2003, 68, 54-60.	1.4	44
81	Identification of a homologue of a house dust mite allergen in a cDNA library from Sarcoptes scabiei var hominis and evaluation of its vaccine potential in a rabbit/S. scabiei var. canis model. American Journal of Tropical Medicine and Hygiene, 2003, 68, 54-60.	1.4	18
82	Generation and characterization of cDNA clones from Sarcoptes scabiei var. hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. American Journal of Tropical Medicine and Hygiene, 2003, 68, 61-4.	1.4	28
83	Clags in Plasmodium falciparum and other species of Plasmodium. Molecular and Biochemical Parasitology, 2001, 118, 259-263.	1.1	9
84	Malaria: A New Gene Family (clag) Involved in Adhesion – Reply. Parasitology Today, 2000, 16, 405.	3.0	0
85	Inhibition of Plasmodium falciparum clag9 gene function by antisense RNA. Molecular and Biochemical Parasitology, 2000, 110, 33-41.	1.1	54
86	The sequence of clag 9, a subtelomeric gene of Plasmodium falciparum is highly conserved. Molecular and Biochemical Parasitology, 2000, 111, 437-440.	1.1	11
87	cytoadherence? 1Note: Nucleotide sequence data reported in this paper are available in the GenBank data base under the accession numbers AF055476, AE001362 and Z97348 and at the databases of the Sanger Centre (http://www.sanger.ac.uk/Projects/P_falciparum) and the Institute for Genomic Reaseach (http://www.tigr.org/tdb/mdb/pfdb). 1. International Journal for Parasitology. 1999. 29.	3.1	50
88	939-944 A high resolution map of chromosome 9 of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1998, 97, 229-233.	1.1	10
89	Current status of the Plasmodium falciparum genome project. Molecular and Biochemical Parasitology, 1996, 79, 1-12.	1.1	55
90	Disruption of a novel open reading frame of Plasmodium falciparum chromosome 9 by subtelomeric and internal deletions can lead to loss or maintenance of cytoadherence. Molecular and Biochemical Parasitology, 1996, 82, 25-36.	1.1	31