Robert Kruk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9551468/publications.pdf

Version: 2024-02-01

		147726	182361
77	2,776 citations	31	51
papers	citations	h-index	g-index
81	81	81	3853
01	01	01	3033
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Determining role of individual cations in high entropy oxides: Structure and reversible tuning of optical properties. Scripta Materialia, 2022, 207, 114273.	2.6	15
2	Creating a Ferromagnetic Ground State with <i>T</i> _c Above Room Temperature in a Paramagnetic Alloy through Nonâ€Equilibrium Nanostructuring. Advanced Materials, 2022, 34, e2108793.	11.1	3
3	Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		

#	Article	IF	Citations
19	Role of intermediate $4 < i > f < i>$ states in tuning the band structure of high entropy oxides. APL Materials, 2020, 8, .	2.2	47
20	Ceramic synthesis of disordered lithium rich oxyfluoride materials. Journal of Power Sources, 2020, 467, 228230.	4.0	7
21	Ni ₆₀ Nb ₄₀ Nanoglass for Tunable Magnetism and Methanol Oxidation. ACS Applied Nano Materials, 2020, 3, 7252-7259.	2.4	11
22	Fully Printed Inverters using Metalâ€Oxide Semiconductor and Graphene Passives on Flexible Substrates. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000252.	1.2	11
23	Magnetic Tb ₇₅ Fe ₂₅ Nanoglass for Cryogenic Permanent Magnet Undulator. ACS Applied Nano Materials, 2020, 3, 7281-7290.	2.4	9
24	Configurable Resistive Response in BaTiO ₃ Ferroelectric Memristors via Electron Beam Radiation. Advanced Materials, 2020, 32, e1907541.	11.1	25
25	Printing Technologies for Integration of Electronic Devices and Sensors. NATO Science for Peace and Security Series C: Environmental Security, 2020, , 1-34.	0.1	4
26	Development of Fully Printed Electrolyte-Gated Oxide Transistors Using Graphene Passive Structures. ACS Applied Electronic Materials, 2019, 1, 1538-1544.	2.0	19
27	Reversible control of magnetism: on the conversion of hydrated FeF ₃ with Li to Fe and LiF. Journal of Materials Chemistry A, 2019, 7, 24005-24011.	5.2	6
28	Controlling the structure and magnetic properties of cluster-assembled metallic glasses. Materials Horizons, 2019, 6, 727-732.	6.4	8
29	Observation of electrochemically active Fe ³⁺ /Fe ⁴⁺ in LiCo _{0.8} Fe _{0.2} MnO ₄ by <i>in situ</i> Mössbauer spectroscopy and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 89-95.	1.3	11
30	Epitaxial strain adaptation in chemically disordered FeRh thin films. Physical Review B, 2019, 99, .	1.1	5
31	Voltageâ€Control of Magnetism in Allâ€Solidâ€State and Solid/Liquid Magnetoelectric Composites. Advanced Materials, 2019, 31, e1806662.	11.1	82
32	Combination of pulsed laser ablation and inert gas condensation for the synthesis of nanostructured nanocrystalline, amorphous and composite materials. Nanoscale Advances, 2019, 1, 4513-4521.	2.2	18
33	Clusterâ€Assembled Nanocomposites: Functional Properties by Design. Advanced Materials, 2019, 31, e1806634.	11.1	16
34	Robust Macroscopic Polarization of Block Copolymer–Templated Mesoporous Perovskiteâ€Type Thinâ€Film Ferroelectrics. Advanced Electronic Materials, 2019, 5, 1800287.	2.6	3
35	High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites. Physical Review Materials, 2019, 3, .	0.9	107
36	Electrochemical Tuning of Magnetism in Ordered Mesoporous Transition-Metal Ferrite Films for Micromagnetic Actuation. ACS Applied Nano Materials, 2018, 1, 65-72.	2.4	24

#	Article	IF	CITATIONS
37	Voltageâ€Controlled On/Off Switching of Ferromagnetism in Manganite Supercapacitors. Advanced Materials, 2018, 30, 1703908.	11.1	43
38	Printed Electronics Based on Inorganic Semiconductors: From Processes and Materials to Devices. Advanced Materials, 2018, 30, e1707600.	11.1	148
39	Anion Doping of Ferromagnetic Thin Films of La0.74Sr0.26MnO3â^δvia Topochemical Fluorination. Materials, 2018, 11, 1204.	1.3	15
40	Proton Conduction in Grain-Boundary-Free Oxygen-Deficient BaFeO2.5+δThin Films. Materials, 2018, 11, 52.	1.3	17
41	In situ Lorentz Transmission Electron Microscopy of FeRh Thin Films. Microscopy and Microanalysis, 2018, 24, 934-935.	0.2	2
42	High-Performance All-Printed Amorphous Oxide FETs and Logics with Electronically Compatible Electrode/Channel Interface. ACS Applied Materials & Interfaces, 2018, 10, 22408-22418.	4.0	39
43	Structure and conductivity of epitaxial thin films of barium ferrite and its hydrated form BaFeO2.5â^'x+δ (OH)2x. Journal Physics D: Applied Physics, 2017, 50, 115302.	1.3	6
44	Hybrid supercapacitors for reversible control of magnetism. Nature Communications, 2017, 8, 15339.	5.8	51
45	Epitaxial strain-engineered self-assembly of magnetic nanostructures in FeRh thin films. Journal Physics D: Applied Physics, 2017, 50, 025007.	1.3	6
46	Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors. Nanotechnology, 2016, 27, 415205.	1.3	9
47	Toward Onâ€andâ€Off Magnetism: Reversible Electrochemistry to Control Magnetic Phase Transitions in Spinel Ferrites. Advanced Functional Materials, 2016, 26, 7507-7515.	7.8	69
48	Anion ordering, magnetic structure and properties of the vacancy ordered perovskite Ba3Fe3O7F. Journal of Solid State Chemistry, 2016, 243, 31-37.	1.4	11
49	Temperature-Dependent Performance of Printed Field-Effect Transistors with Solid Polymer Electrolyte Gating. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31757-31763.	4.0	31
50	Tailoring magnetic frustration in strained epitaxial FeRh films. Physical Review B, 2016, 93, .	1.1	22
51	Ink-Jet Printed CMOS Electronics from Oxide Semiconductors. Small, 2015, 11, 3591-3596.	5.2	70
52	Magnetic properties of iron cluster/chromium matrix nanocomposites. Beilstein Journal of Nanotechnology, 2015, 6, 1158-1163.	1.5	8
53	A General Route toward Complete Room Temperature Processing of Printed and High Performance Oxide Electronics. ACS Nano, 2015, 9, 3075-3083.	7.3	78
54	A nanoglass alloying immiscible Fe and Cu at the nanoscale. Nanoscale, 2015, 7, 6607-6611.	2.8	33

#	Article	IF	Citations
55	Intercalationâ€Driven Reversible Control of Magnetism in Bulk Ferromagnets. Advanced Materials, 2014, 26, 4639-4644.	11.1	85
56	Introducing a Large Polar Tetragonal Distortion into Ba-Doped BiFeO ₃ by Low-Temperature Fluorination. Inorganic Chemistry, 2014, 53, 12572-12583.	1.9	29
57	Crystallographic and Magnetic Structure of the Perovskite-Type Compound BaFeO _{2.5} : Unrivaled Complexity in Oxygen Vacancy Ordering. Inorganic Chemistry, 2014, 53, 5911-5921.	1.9	44
58	The power of <i>inâ€situ</i> pulsed laser deposition synchrotron characterization for the detection of domain formation during growth of Ba _{0.5} Sr _{0.5} TiO ₃ on MgO. Journal of Synchrotron Radiation, 2014, 21, 386-394.	1.0	19
59	Electrolyte-Gated, High Mobility Inorganic Oxide Transistors from Printed Metal Halides. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11498-11502.	4.0	67
60	Temperature tolerance study of high performance electrochemically gated SnO2 nanowire field-effect transistors. Journal of Materials Chemistry C, 2013, 1, 2534.	2.7	16
61	<i>In situ</i> magnetometry studies of magnetoelectric LSMO/PZT heterostructures. Physical Review B, 2013, 87, .	1.1	63
62	Highâ€Speed, Lowâ€Voltage, and Environmentally Stable Operation of Electrochemically Gated Zinc Oxide Nanowire Fieldâ€Effect Transistors. Advanced Functional Materials, 2013, 23, 1750-1758.	7.8	86
63	Thermal and Photoinduced Spin Crossover in a Mononuclear Iron(II) Complex with a Bis(pyrazolyl)pyridine Type of Ligand. European Journal of Inorganic Chemistry, 2013, 2013, 1049-1057.	1.0	24
64	Room temperature reversible tuning of magnetism of electrolyte-gated La0.75Sr0.25MnO3 nanoparticles. Journal of Applied Physics, 2013, 113, .	1.1	16
65	The interplay of iron(ii) spin transition and polymorphism. Dalton Transactions, 2012, 41, 5163.	1.6	43
66	Ferroelectric vs. structural properties of large-distance sputtered epitaxial LSMO/PZT heterostructures. AIP Advances, 2012, 2, .	0.6	15
67	Printed and Electrochemically Gated, Highâ€Mobility, Inorganic Oxide Nanoparticle FETs and Their Suitability for Highâ€Frequency Applications. Advanced Functional Materials, 2012, 22, 4909-4919.	7.8	75
68	Large-distance rf- and dc-sputtering of epitaxial La1â^3xSrxMnO3 thin films. Thin Solid Films, 2012, 520, 5521-5527.	0.8	25
69	Inkjet Printed, High Mobility Inorganic-Oxide Field Effect Transistors Processed at Room Temperature. ACS Nano, 2011, 5, 9628-9638.	7.3	118
70	Local Structural Disorder and Relaxation in SnO ₂ Nanostructures Studied by ¹¹⁹ Sn MAS NMR and ¹¹⁹ Sn Mössbauer Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 6433-6437.	1.5	40
71	Bulk Nanostructured Materials: Nonâ€Mechanical Synthesis. Advanced Engineering Materials, 2010, 12, 666-676.	1.6	6
72	External electric field driven 3D ordering architecture of silver (I) oxide meso-superstructures. Nano Today, 2010, 5, 175-182.	6.2	61

Robert Kruk

#	Article	IF	CITATION
73	Gold Mesostructures with Tailored Surface Topography and Their Self-Assembly Arrays for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2010, 10, 5006-5013.	4.5	295
74	Lattice-solvent controlled spin transitions in iron(ii) complexes. Dalton Transactions, 2007, , 3531.	1.6	49
75	Above room temperature spin transition in a metallo-supramolecular coordination oligomer/polymer. Chemical Communications, 2007, , 2636.	2.2	81
76	Spin Transition in a Chainlike Supramolecular Iron(II) Complex. Inorganic Chemistry, 2006, 45, 10019-10021.	1.9	71
77	Structure, magnetic properties and Mössbauer spectroscopy of GdRhSn. Journal of Solid State Chemistry, 2005, 178, 2077-2090.	1.4	26