
JérÃ'me Lavoué

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9551204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SYN-JEM: A Quantitative Job-Exposure Matrix for Five Lung Carcinogens. Annals of Occupational Hygiene, 2016, 60, 795-811.	1.9	67
2	Occupational Exposure to Silica and Lung Cancer: Pooled Analysis of Two Case-Control Studies in Montreal, Canada. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1602-1611.	2.5	49
3	Modelling of occupational respirable crystalline silica exposure for quantitative exposure assessment in community-based case-control studies. Journal of Environmental Monitoring, 2011, 13, 3262.	2.1	48
4	Halogenated flame retardants and organophosphate esters in the air of electronic waste recycling facilities: Evidence of high concentrations and multiple exposures. Environment International, 2019, 128, 244-253.	10.0	46
5	Comparison of exposure estimates in the Finnish job-exposure matrix FINJEM with a JEM derived from expert assessments performed in Montreal. Occupational and Environmental Medicine, 2012, 69, 465-471.	2.8	44
6	Development of an Exposure Measurement Database on Five Lung Carcinogens (ExpoSYN) for Quantitative Retrospective Occupational Exposure Assessment. Annals of Occupational Hygiene, 2012, 56, 70-9.	1.9	40
7	Airborne exposure to inhalable hexavalent chromium in welders and other occupations: Estimates from the German MEGA database. International Journal of Hygiene and Environmental Health, 2015, 218, 500-506.	4.3	39
8	The current burden of cancer attributable to occupational exposures in Canada. Preventive Medicine, 2019, 122, 128-139.	3.4	38
9	Occupational exposure to pesticides and other biocides and risk of thyroid cancer. Occupational and Environmental Medicine, 2017, 74, 502-510.	2.8	36
10	Multi-exposures to suspected endocrine disruptors in electronic waste recycling workers: Associations with thyroid and reproductive hormones. International Journal of Hygiene and Environmental Health, 2020, 225, 113445.	4.3	35
11	Availability of a New Job-Exposure Matrix (CANJEM) for Epidemiologic and Occupational Medicine Purposes. Journal of Occupational and Environmental Medicine, 2018, 60, e324-e328.	1.7	29
12	Occupation, industry, and the risk of prostate cancer: a case-control study in Montréal, Canada. Environmental Health, 2016, 15, 100.	4.0	28
13	Expostats: A Bayesian Toolkit to Aid the Interpretation of Occupational Exposure Measurements. Annals of Work Exposures and Health, 2019, 63, 267-279.	1.4	27
14	An empirical hierarchical Bayesian unification of occupational exposure assessment methods. Statistics in Medicine, 2009, 28, 75-93.	1.6	26
15	INTEROCC case–control study: lack of association between glioma tumors and occupational exposure to selected combustion products, dusts and other chemical agents. BMC Public Health, 2013, 13, 340.	2.9	26
16	Lifetime occupational exposure to metals and welding fumes, and risk of glioma: a 7-country population-based case–control study. Environmental Health, 2017, 16, 90.	4.0	26
17	Assessing Occupational Exposure to Chemicals in an International Epidemiological Study of Brain Tumours. Annals of Occupational Hygiene, 2013, 57, 610-26.	1.9	24
18	Statistical Modelling of Formaldehyde Occupational Exposure Levels in French Industries, 1986–2003. Annals of Occupational Hygiene, 2005, 50, 305-21.	1.9	22

Jérôme Lavoué

#	Article	IF	CITATIONS
19	Silica Exposure During Construction Activities: Statistical Modeling of Task-Based Measurements from the Literature. Annals of Occupational Hygiene, 2012, 57, 432-43.	1.9	22
20	Lung cancer risk among workers in the construction industry: results from two case–control studies in Montreal. BMC Public Health, 2015, 15, 941.	2.9	22
21	Descriptive analysis and comparison of two French occupational exposure databases: COLCHIC and SCOLA. American Journal of Industrial Medicine, 2016, 59, 379-391.	2.1	21
22	Modelling of occupational exposure to inhalable nickel compounds. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 427-433.	3.9	20
23	Investigation of Determinants of Past and Current Exposures to Formaldehyde in the Reconstituted Wood Panel Industry in Quebec. Annals of Occupational Hygiene, 2005, 49, 587-602.	1.9	17
24	Toward Understanding of Environmental Risk Factors in Systemic Sclerosis. Journal of Cutaneous Medicine and Surgery, 2021, 25, 188-204.	1.2	17
25	Estimating the population prevalence of traditional and novel occupational exposures in Federal Region X. American Journal of Industrial Medicine, 2019, 62, 111-122.	2.1	15
26	Trends in OSHA Compliance Monitoring Data 1979–2011: Statistical Modeling of Ancillary Information across 77 Chemicals. Annals of Occupational Hygiene, 2016, 60, 432-452.	1.9	14
27	Exposure to polybrominated diphenyl ethers (PBDEs) in American and Canadian workers: Biomonitoring data from two national surveys. Science of the Total Environment, 2018, 631-632, 1465-1471.	8.0	13
28	A hybrid expert approach for retrospective assessment of occupational exposures in a population-based case-control study of cancer. Environmental Health, 2019, 18, 14.	4.0	13
29	Occupational Exposure Assessment in Industry- and Population-Based Epidemiological Studies. , 2015, , 139-162.		12
30	Statistical modeling of crystalline silica exposure by trade in the construction industry using a database compiled from the literature. Journal of Environmental Monitoring, 2012, 14, 2512-2520.	2.1	11
31	Diesel engine exhaust exposure in underground mines: Comparison between different surrogates of particulate exposure. Journal of Occupational and Environmental Hygiene, 2018, 15, 549-558.	1.0	11
32	Development of a Coding and Crosswalk Tool for Occupations and Industries. Annals of Work Exposures and Health, 2018, 62, 796-807.	1.4	11
33	Development of and Selected Performance Characteristics of CANJEM, a General Population Job-Exposure Matrix Based on Past Expert Assessments of Exposure. Annals of Work Exposures and Health, 2018, 62, 783-795.	1.4	9
34	Lack of a protective effect of cotton dust on risk of lung cancer: evidence from two population-based case-control studies. BMC Cancer, 2015, 15, 212.	2.6	8
35	Impact of aggregating exposure information from cases and controls when building a population-based job-exposure matrix from past expert evaluations. Occupational and Environmental Medicine, 2016, 73, 474-481.	2.8	8
36	Agreement in Occupational Exposures Between Men and Women Using Retrospective Assessments by Expert Coders. Annals of Work Exposures and Health, 2018, 62, 1159-1170.	1.4	8

Jérôme Lavoué

#	Article	IF	CITATIONS
37	Correction of odds ratios in case-control studies for exposure misclassification with partial knowledge of the degree of agreement among experts who assessed exposures. Occupational and Environmental Medicine, 2018, 75, 155-159.	2.8	7
38	Occupational Co-exposures to Multiple Chemical Agents from Workplace Measurements by the US Occupational Safety and Health Administration. Annals of Work Exposures and Health, 2020, 64, 402-415.	1.4	7
39	Characterization of the Selective Recording of Workplace Exposure Measurements into OSHA's IMIS Databank. Annals of Work Exposures and Health, 2018, 62, 269-280.	1.4	6
40	A Web-based Tool to Aid the Identification of Chemicals Potentially Posing a Health Risk through Percutaneous Exposure. Annals of Occupational Hygiene, 2016, 60, 276-289.	1.9	4
41	Modeling occupational exposure to solvent vapors using the Two-Zone (near-field/far-field) model: a literature review. Journal of Occupational and Environmental Hygiene, 2021, 18, 51-64.	1.0	4
42	0382â€CANJEM: a general population job exposure matrix based on past expert assessments of exposure to over 250 agents. Occupational and Environmental Medicine, 2014, 71, A48.2-A48.	2.8	3
43	Development of Quantitative Estimates of Wood Dust Exposure in a Canadian General Population Job-Exposure Matrix Based on Past Expert Assessments. Annals of Work Exposures and Health, 2019, 63, 22-33.	1.4	3
44	Evidence of Absence: Bayesian Way to Reveal True Zeros Among Occupational Exposures. Annals of Work Exposures and Health, 2021, 65, 84-95.	1.4	3
45	Concordance of Occupational Exposure Assessment between the Canadian Job-Exposure Matrix (CANJEM) and Expert Assessment of Jobs Held by Women. Annals of Work Exposures and Health, 2022, 66, 728-740.	1.4	3
46	Bayesian Hierarchical Modelling of Individual Expert Assessments in the Development of a General-Population Job-Exposure Matrix. Annals of Work Exposures and Health, 2020, 64, 13-24.	1.4	2
47	OUP accepted manuscript. Annals of Work Exposures and Health, 2021, , .	1.4	2
48	0470â€Comparison of occupational cancer burden estimates. , 2017, , .		1
49	Predicting first-order evaporation rate constant alpha ($\hat{l}\pm$) from small spills of organic solvents in a controlled environment. Journal of Occupational and Environmental Hygiene, 2022, , 1-18.	1.0	1
50	O43-4â€Evaluation of a hybrid expert approach for retrospective assessment of occupational exposures in a population-based study of prostate cancer in montreal, canada. , 2016, , .		0
51	P025â€Lung cancer risk among firefighters when accounting for tobacco smoking – preliminary results from a pooled analysis of case-control studies from europe, canada, new zealand and china. , 2016, , .		0
52	0409â€Industry, occupation and sex differences in workers' exposure to endocrine disrupting metals in an american and a canadian survey. , 2017, , .		0
53	0379â€Calculating the current burden of occupational cancers in canadian women. , 2017, , .		0
54	0408â€Workers' exposure to brominated flame retardants: a glance at american and canadian population databases. , 2017, , .		0

#	Article	IF	CITATIONS
55	O6D.5â€Electronic waste recycling exposure and hormone levels in workers. Occupational and Environmental Medicine, 2019, 76, A58.2-A59.	2.8	ο