Barbara Stenni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9551122/publications.pdf

Version: 2024-02-01

169

all docs

106 11,788 44
papers citations h-index

29081

104

#	Article	IF	CITATIONS
1	Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429, 623-628.	13.7	2,015
2	Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science, 2007, 317, 793-796.	6.0	1,880
3	One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444, 195-198.	13.7	1,111
4	Continental-scale temperature variability during the past two millennia. Nature Geoscience, 2013, 6, 339-346.	5.4	954
5	A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*. Journal of Climate, 2008, 21, 3359-3387.	1.2	344
6	Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change, 2016, 6, 917-926.	8.1	253
7	An Oceanic Cold Reversal During the Last Deglaciation. Science, 2001, 293, 2074-2077.	6.0	224
8	Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nature Geoscience, 2011, 4, 46-49.	5.4	212
9	EPICA Dome C record of glacial and interglacial intensities. Quaternary Science Reviews, 2010, 29, 113-128.	1.4	202
10	The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quaternary Science Reviews, 2010, 29, 146-159.	1.4	195
11	Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmospheric Chemistry and Physics, 2013, 13, 4815-4828.	1.9	155
12	Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica Et Cosmochimica Acta, 1995, 59, 4299-4305.	1.6	150
13	Antarctic climate variability on regional and continental scales over the last 2000Âyears. Climate of the Past, 2017, 13, 1609-1634.	1.3	145
14	Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period. Climate of the Past, 2010, 6, 345-365.	1.3	143
15	A new 27 ky high resolution East Antarctic climate record. Geophysical Research Letters, 2001, 28, 3199-3202.	1.5	140
16	A comparison of the present and last interglacial periods in six Antarctic ice cores. Climate of the Past, 2011, 7, 397-423.	1.3	131
17	Rooting depth, water relations and nonâ€structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant, Cell and Environment, 2016, 39, 618-627.	2.8	126
18	Regional Antarctic snow accumulation over the past 1000 years. Climate of the Past, 2017, 13, 1491-1513.	1.3	124

#	Article	IF	CITATIONS
19	Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). Journal of Geophysical Research, 2002, 107, ACL 3-1-ACL 3-13.	3.3	121
20	What controls the isotopic composition of Greenland surface snow?. Climate of the Past, 2014, 10, 377-392.	1.3	121
21	On the reproducibility and repeatability of laser absorption spectroscopy measurements for Î ² H and Î ¹⁸ O isotopic analysis. Hydrology and Earth System Sciences, 2010, 14, 1551-1566.	1.9	116
22	A global database of Holocene paleotemperature records. Scientific Data, 2020, 7, 115.	2.4	112
23	Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature, 2018, 563, 681-685.	13.7	108
24	Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles. Climate of the Past, 2012, 8, 1109-1125.	1.3	98
25	Past temperature reconstructions from deep ice cores: relevance for future climate change. Climate of the Past, 2006, 2, 145-165.	1.3	95
26	TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica. Climate of the Past, 2011, 7, 1-16.	1.3	93
27	Common millennial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core. Holocene, 2004, 14, 145-151.	0.9	84
28	A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica). Earth and Planetary Science Letters, 2004, 217, 183-195.	1.8	83
29	Deglaciation records of & Deglaciation records of amp; It; sup amp; It; Is sup amp; It; Is up am	1.3	80
30	Technical Note: Evaluation of between-sample memory effects in the analysis of Î ² H and Î' ¹⁸ O of water samples measured by laser spectroscopes. Hydrology and Earth System Sciences, 2012, 16, 3925-3933.	1.9	78
31	Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 107, 317-328.	1.0	77
32	Abrupt change of Antarctic moisture origin at the end of Termination II. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12091-12094.	3.3	71
33	Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nature Communications, 2017, 8, 1334.	5.8	67
34	A review of the bipolar see–saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quaternary Science Reviews, 2015, 114, 18-32.	1.4	63
35	Three-year monitoring of stable isotopes of precipitation at Concordia Station, East Antarctica. Cryosphere, 2016, 10, 2415-2428.	1.5	62
36	New MIS 19 EPICA Dome C high resolution deuterium data: Hints for a problematic preservation of climate variability at sub-millennial scale in the "oldest ice†Earth and Planetary Science Letters, 2010, 298, 95-103.	1.8	60

#	Article	IF	Citations
37	Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters. Cryosphere, 2016, 10, 837-852.	1.5	56
38	A late medieval warm period in the Southern Ocean as a delayed response to external forcing?. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	54
39	A 16,000-yr tephra framework for the Antarctic ice sheet: a contribution from the new Talos Dome core. Quaternary Science Reviews, 2012, 49, 52-63.	1.4	51
40	Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP. Climate of the Past, 2012, 8, 509-517.	1.3	51
41	The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations. Earth and Planetary Science Letters, 2015, 427, 160-170.	1.8	51
42	Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica): implications for atmospheric variations from regional to hemispheric scales. Climate of the Past, 2012, 8, 741-750.	1.3	50
43	Temperature trends during the Present and Last Interglacial periods – a multi-model-data comparison. Quaternary Science Reviews, 2014, 99, 224-243.	1.4	48
44	Archival processes of the water stable isotope signal in East Antarctic ice cores. Cryosphere, 2018, 12, 1745-1766.	1.5	48
45	Climate variability along latitudinal and longitudinal transects in East Antarctica. Annals of Glaciology, 2004, 39, 351-358.	2.8	47
46	Nitrate in Polar Ice: A New Tracer of Solar Variability. Solar Physics, 2012, 280, 237-254.	1.0	47
47	Chemical and isotopic snow variability along the 1998 ITASE traverse from Terra Nova Bay to Dome C, East Antarctica. Annals of Glaciology, 2002, 35, 187-194.	2.8	44
48	Stratigraphic correlations between the European Project for Ice Coring in Antarctica (EPICA) Dome C and Vostok ice cores showing the relative variations of snow accumulation over the past 45 kyr. Journal of Geophysical Research, 2004, 109, .	3.3	43
49	Age of the Mt.ÂOrtles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum. Cryosphere, 2016, 10, 2779-2797.	1.5	43
50	Snow accumulation rates in northern Victoria Land, Antarctica, by firn-core analysis. Journal of Glaciology, 2000, 46, 541-552.	1.1	42
51	Chemical and isotopic snow variability in East Antarctica along the 2001/02 ITASE traverse. Annals of Glaciology, 2004, 39, 473-482.	2.8	40
52	Regional imprints of millennial variability during the MIS 3 period around Antarctica. Quaternary Science Reviews, 2012, 48, 99-112.	1.4	40
53	A stable isotope study of the Garda lake, northern Italy: Its hydrological balance. Journal of Hydrology, 2008, 360, 103-116.	2.3	37
54	Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP. Climate of the Past, 2013, 9, 887-901.	1.3	33

#	Article	IF	CITATIONS
55	Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core. Cryosphere, 2015, 9, 1633-1648.	1.5	32
56	Links between MIS 11 millennial to sub-millennial climate variability and long term trends as revealed by new high resolution EPICA Dome C deuterium data $\hat{a} \in A$ comparison with the Holocene. Climate of the Past, 2011, 7, 437-450.	1.3	30
57	Significant marine-ice accumulation in the ablation zone beneath an Antarctic ice shelf. Journal of Glaciology, 2001, 47, 359-368.	1.1	29
58	Isotopic composition and thermal regime of ice wedges in northern Victoria Land, East Antarctica. Permafrost and Periglacial Processes, 2011, 22, 65-83.	1.5	27
59	Antarctic temperature changes during the last millennium: evaluation of simulations and reconstructions. Quaternary Science Reviews, 2012, 55, 75-90.	1.4	27
60	Precipitation and synoptic regime in two extreme years 2009 and 2010 at Dome C, Antarctica – implications for ice core interpretation. Atmospheric Chemistry and Physics, 2016, 16, 4757-4770.	1.9	26
61	Siderophile metal fallout to Greenland from the 1991 winter eruption of Hekla (Iceland) and during the global atmospheric perturbation of Pinatubo. Chemical Geology, 2008, 255, 78-86.	1.4	25
62	The dynamics of central Main Ethiopian Rift waters: Evidence from $\hat{I}D$, $\hat{I}180$ and $87\text{Sr}/86\text{Sr}$ ratios. Applied Geochemistry, 2010, 25, 1860-1871.	1.4	25
63	Prominent features in isotopic, chemical and dust stratigraphies from coastal East Antarctic ice sheet (Eastern Wilkes Land). Chemosphere, 2017, 176, 273-287.	4.2	24
64	Climate variability features of the last interglacial in the East Antarctic EPICA Dome C ice core. Geophysical Research Letters, 2014, 41, 4004-4012.	1.5	23
65	200 years of isotope and chemical records in a firn core from Hercules Névé, northern Victoria Land, Antarctica. Annals of Glaciology, 1999, 29, 106-112.	2.8	22
66	Experimental observation of transient <i>Î'</i> ¹⁸ O interaction between snow and advective airflow under various temperature gradient conditions. Cryosphere, 2017, 11, 1733-1743.	1.5	22
67	Vineyard water relations in a karstic area: deep roots and irrigation management. Agriculture, Ecosystems and Environment, 2018, 263, 53-59.	2.5	22
68	Larix decidua δ180 tree-ring cellulose mainly reflects the isotopic signature of winter snow in a high-altitude glacial valley of the European Alps. Science of the Total Environment, 2017, 579, 230-237.	3.9	21
69	Assessing the robustness of Antarctic temperature reconstructions over the past 2Âmillennia using pseudoproxy and data assimilation experiments. Climate of the Past, 2019, 15, 661-684.	1.3	21
70	Influence of Summer Sublimation on $\hat{\Gamma}$ D, $\hat{\Gamma}$ (sup>180, and $\hat{\Gamma}$ (sup>170 in Precipitation, East Antarctica, and Implications for Climate Reconstruction From Ice Cores. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7339-7358.	1.2	20
71	Estimation of soil water evaporative loss after tillage operation using the stable isotope technique. International Agrophysics, 2013, 27, 257-264.	0.7	19
72	Peritidal sedimentary depositional facies and carbon isotope variation across K/T boundary carbonates from NW Adriatic platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 255, 77-86.	1.0	18

#	Article	IF	CITATIONS
73	The atmospheric water cycle of a coastal lagoon: An isotope study of the interactions between water vapor, precipitation and surface waters. Journal of Hydrology, 2019, 572, 630-644.	2.3	18
74	Chemical and isotopic profiles from snow pits and shallow firn cores on Campbell Glacier, northern Victoria Land, Antarctica. Annals of Glaciology, 1998, 27, 679-684.	2.8	17
75	An oxygen isotope record from the Foscagno rock-glacier ice core, Upper Valtellina, Italian Central Alps. Holocene, 2007, 17, 1033-1039.	0.9	15
76	A new Eemian record of Antarctic tephra layers retrieved from the Talos Dome ice core (Northern) Tj ETQq0 0 0	rgBT/Ovei	rlock 10 Tf 50
77	Regionalization of the Atmospheric Dust Cycle on the Periphery of the East Antarctic Ice Sheet Since the Last Glacial Maximum. Geochemistry, Geophysics, Geosystems, 2018, 19, 3540-3554.	1.0	14
78	Rapid climate variability during warm and cold periods in polar regions and Europe. Comptes Rendus - Geoscience, 2005, 337, 935-946.	0.4	13
79	Radiocarbon ages of pedogenic carbonate nodules from Coimbatore region, Tamil Nadu. Journal of the Geological Society of India, 2010, 75, 791-798.	0.5	13
80	Stable isotope study of water, gypsum and carbonate samples from the Bannock and Tyro Basins, eastern Mediterranean. Marine Chemistry, 1990, 31, 123-135.	0.9	12
81	The influence of the synoptic regime on stable water isotopes in precipitation at DomeÂC, East Antarctica. Cryosphere, 2017, 11, 2345-2361.	1.5	12
82	Grapevine water relations and rooting depth in karstic soils. Science of the Total Environment, 2019, 692, 669-675.	3.9	12
83	Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts. Nature Geoscience, 2021, 14, 918-923.	5.4	12
84	Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent. Chemosphere, 2017, 177, 266-274.	4.2	11
85	Water Isotopic Signature of Surface Snow Metamorphism in Antarctica. Geophysical Research Letters, 2021, 48, e2021GL093382.	1.5	11
86	Growth processes of an inland Antarctic ice wedge, Mesa Range, northern Victoria Land. Annals of Glaciology, 2004, 39, 379-385.	2.8	10
87	An extension of the TALDICE ice core age scale reaching back to MIS 10.1. Quaternary Science Reviews, 2021, 266, 107078.	1.4	10
88	OUP accepted manuscript. , 2019, 7, coz012.		10
89	Isotopic features of precipitation and groundwater from the Eastern Alps of Italy: results from the Mt. Tinisa hydrogeological system. Environmental Earth Sciences, 2017, 76, 1.	1.3	9
90	Oxygen and hydrogen isotopic composition of waters in a past-mining area of southern Apuan Alps (Italy): Hydrogeological characterization and implications on the fate of potentially toxic elements. Journal of Geochemical Exploration, 2019, 205, 106338.	1.5	9

#	Article	IF	CITATIONS
91	Volcanic Fluxes Over the Last Millennium as Recorded in the Gv7 Ice Core (Northern Victoria Land,) Tj ETQq $1\ 1$	0.784314 1.0	rgBJ /Overloc
92	Palaeoproductivity in the Ross Sea, Antarctica, during the last 15 kyr BP and its link with ice-core temperature proxies. Annals of Glaciology, 2004, 39, 445-451.	2.8	8
93	Climate dependent contrast in surface mass balance in East Antarctica over the past 216 ka. Journal of Glaciology, 2016, 62, 1037-1048.	1.1	8
94	Spatial distribution and interannual trends of δ180, δ2H, and deuterium excess in precipitation across North-Eastern Italy. Journal of Hydrology, 2021, 598, 125749.	2.3	7
95	Identification of the Palaeocene–Eocene Boundary Based on Larger Foraminifers in Deposits of the Palaeogene Adriatic Carbonate Platform, Southwestern Slovenia. Springer Geology, 2014, , 89-93.	0.2	7
96	Isotopic Characterization of Italian Industrial Hemp (Cannabis sativa L.) Intended for Food Use: A First Exploratory Study. Separations, 2022, 9, 136.	1.1	7
97	First discrete iron(II) records from Dome C (Antarctica) and the Holtedahlfonna glacier (Svalbard). Chemosphere, 2021, 267, 129335.	4.2	6
98	Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation. Cryosphere, 2021, 15, 3523-3538.	1.5	6
99	Unveiling the anatomy of Termination 3 using water and air isotopes in the Dome C ice core, East Antarctica. Quaternary Science Reviews, 2019, 211, 156-165.	1.4	5
100	Water Masses in the Eastern Mediterranean Sea: An Analysis of Measured Isotopic Oxygen. Pure and Applied Geophysics, 2018, 175, 4047-4064.	0.8	4
101	Tree-ring \hat{l} < sup > 18 < / sup > 0 from an Alpine catchment reveals changes in glacier stream water inputs between 1980 and 2010. Arctic, Antarctic, and Alpine Research, 2019, 51, 250-264.	0.4	4
102	Synoptic to mesoscale processes affecting the water vapor isotopic daily cycle over a coastal lagoon. Atmospheric Environment, 2019, 197, 118-130.	1.9	4
103	Characterization of water chemistry in some communities of the Lower Tano river basin, Ghana, West Africa. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	3
104	Dating of the GV7 East Antarctic ice core by high-resolution chemical records and focus on the accumulation rate variability in the last millennium. Climate of the Past, 2021, 17, 2073-2089.	1.3	3
105	Geochemical features and effects on deep-seated fluids during the May-June 2012 southern Po Valley seismic sequence. Annals of Geophysics, 2012, 55, .	0.5	2
106	Long-term climate evolution based on ice core records. , 2020, , 3-25.		0